PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multiplicativem-metric space, fixed point theorems with applications in multiplicative integrals equation and numerical results

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this manuscript is to introduce the notion of multiplicativem-metric space, inspired by the concepts of multiplicative metric space andm-metric space.We propose a generalized notion of the distance function known as the multiplicative m-metric. Firstly, we present the fundamental definitions for the multiplicative m-metric space, then delve into the topological aspects, including the convergence of sequences and completeness. Additionally, we provide various illustrations to support our discussion.We also generalize some well-known contraction mappings and prove fixed point theorems on the complete multiplicative m-metric space. To complement our findings, we have included numerical results along with graphs to provide visual support for our conclusions. Furthermore, we explore the potential of utilizing the multiplicative m-metric to demonstrate the existence of the solution to a multiplicative integral equation.
Wydawca
Rocznik
Strony
173--186
Opis fizyczny
Bibliogr. 25 poz., wykr.
Twórcy
autor
  • Department of Mathematics, Lovely Professional University, Phagwara, 144411, India
autor
  • Department of Mathematics, Lovely Professional University, Phagwara, 144411, India
Bibliografia
  • [1] M. Abbas, B. Ali and Y. I. Suleiman, Common fixed points of locally contractive mappings in multiplicative metric spaces with application, Int. J. Math. Math. Sci. 2015 (2015), Article ID 218683.
  • [2] M. Abbas, M. De la Sen and T. Nazir, Common fixed points of generalized rational type cocyclic mappings in multiplicative metric spaces, Discrete Dyn. Nat. Soc. 2015 (2015), Article ID 532725.
  • [3] A. A. N. Abdou, Fixed point theorems for generalized contraction mappings in multiplicative metric spaces, J. Nonlinear Sci. Appl. 9 (2016), no. 5, 2347-2363.
  • [4] R. P. Agarwal, E. Karapınar and B. Samet, An essential remark on fixed point results on multiplicative metric spaces, Fixed Point Theory Appl. 2016 (2016), Paper No. 21.
  • [5] M. Asadi, Fixed point theorems for Meir-Keeler type mappings in M-metric spaces with applications, Fixed Point Theory Appl. 2015 (2015), Paper No. 10.
  • [6] M. Asadi, E. Karapınar and P. Salimi, New extension of p-metric spaces with some fixed-point results on M-metric spaces, J. Inequal. Appl. 2014 (2014), Article ID 18.
  • [7] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133-181.
  • [8] A. E. Bashirov, E. M. Kurpınar and A. Özyapıcı, Multiplicative calculus and its applications, J. Math. Anal. Appl. 337 (2008), no. 1, 36-48.
  • [9] S. K. Chatterjea, Fixed-point theorems, C. R. Acad. Bulgare Sci. 25 (1972), 727-730.
  • [10] M. Grossman and R. Katz, Non-Newtonian Calculus, Lee Press, Pigeon Cove, 1972.
  • [11] X. He, M. Song and D. Chen, Common fixed points for weak commutative mappings on a multiplicative metric space, Fixed Point Theory Appl. 2014 (2014), Paper No. 48.
  • [12] H. Huang, G. Deng, T. Došenović and N. Hussain, Note on recent common coupled fixed point results in multiplicative metric spaces, Appl. Math. Nonlinear Sci. 3 (2018), no. 2, 669-678.
  • [13] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71-76.
  • [14] P. Kumrod and W. Sintunavarat, Partial answers of the Asadi et al.’s open question on M-metric spaces with numerical results, Arab. J. Math. Sci. 24 (2018), no. 2, 134-146.
  • [15] S. G. Matthews, Partial metric topology, in: Papers on General Topology and Applications, Ann. New York Acad. Sci. 728, New York Academy of Sciences, New York (1994), 183-197.
  • [16] H. Monfared, M. Azhini and M. Asadi, Fixed point results on M-metric spaces, J. Math. Anal. 7 (2016), no. 5, 85-101.
  • [17] C. Mongkolkeha and W. Sintunavarat, Best proximity points for multiplicative proximal contraction mapping on multiplicative metric spaces, J. Nonlinear Sci. Appl. 8 (2015), no. 6, 1134-1140.
  • [18] M. Ozavsar and A. C. Cevikel, Fixed points of multiplicative contraction mappings on multiplicative metric spaces, preprint (2012), https://arxiv.org/abs/1205.5131.
  • [19] S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull. 14 (1971), 121-124.
  • [20] B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226 (1977), 257-290.
  • [21] A. Robinson, Non-standard analysis, Indag. Math. 23 (1961), 432-440.
  • [22] M. Sarwar and Badhah -e- Rome, Some unique fixed point theorems in multiplicative metric space, preprint (2014), https://arxiv.org/abs/1410.3384v2.
  • [23] D. Stanley, A multiplicative calculus, Primus 9 (1999), no. 4, 310-326.
  • [24] M. Tariq, M. Abbas, A. Hussain, M. Arshad, A. Ali and H. Al-Sulami, Fixed points of non-linear set-valued (α∗, ϕM)-contraction mappings and related applications, AIMS Math. 7 (2022), no. 5, 8861-8878.
  • [25] B. Zada and U. Riaz, Some fixed point results on multiplicative (b)-metric-like spaces, Turkish J. Math. 4 (2016), no. 5, 118-131.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1434a35c-91d8-4466-8690-030c2eef9dff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.