Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The objective of this manuscript is to introduce the notion of multiplicativem-metric space, inspired by the concepts of multiplicative metric space andm-metric space.We propose a generalized notion of the distance function known as the multiplicative m-metric. Firstly, we present the fundamental definitions for the multiplicative m-metric space, then delve into the topological aspects, including the convergence of sequences and completeness. Additionally, we provide various illustrations to support our discussion.We also generalize some well-known contraction mappings and prove fixed point theorems on the complete multiplicative m-metric space. To complement our findings, we have included numerical results along with graphs to provide visual support for our conclusions. Furthermore, we explore the potential of utilizing the multiplicative m-metric to demonstrate the existence of the solution to a multiplicative integral equation.
Wydawca
Czasopismo
Rocznik
Tom
Strony
173--186
Opis fizyczny
Bibliogr. 25 poz., wykr.
Twórcy
autor
- Department of Mathematics, Lovely Professional University, Phagwara, 144411, India
autor
- Department of Mathematics, Lovely Professional University, Phagwara, 144411, India
Bibliografia
- [1] M. Abbas, B. Ali and Y. I. Suleiman, Common fixed points of locally contractive mappings in multiplicative metric spaces with application, Int. J. Math. Math. Sci. 2015 (2015), Article ID 218683.
- [2] M. Abbas, M. De la Sen and T. Nazir, Common fixed points of generalized rational type cocyclic mappings in multiplicative metric spaces, Discrete Dyn. Nat. Soc. 2015 (2015), Article ID 532725.
- [3] A. A. N. Abdou, Fixed point theorems for generalized contraction mappings in multiplicative metric spaces, J. Nonlinear Sci. Appl. 9 (2016), no. 5, 2347-2363.
- [4] R. P. Agarwal, E. Karapınar and B. Samet, An essential remark on fixed point results on multiplicative metric spaces, Fixed Point Theory Appl. 2016 (2016), Paper No. 21.
- [5] M. Asadi, Fixed point theorems for Meir-Keeler type mappings in M-metric spaces with applications, Fixed Point Theory Appl. 2015 (2015), Paper No. 10.
- [6] M. Asadi, E. Karapınar and P. Salimi, New extension of p-metric spaces with some fixed-point results on M-metric spaces, J. Inequal. Appl. 2014 (2014), Article ID 18.
- [7] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133-181.
- [8] A. E. Bashirov, E. M. Kurpınar and A. Özyapıcı, Multiplicative calculus and its applications, J. Math. Anal. Appl. 337 (2008), no. 1, 36-48.
- [9] S. K. Chatterjea, Fixed-point theorems, C. R. Acad. Bulgare Sci. 25 (1972), 727-730.
- [10] M. Grossman and R. Katz, Non-Newtonian Calculus, Lee Press, Pigeon Cove, 1972.
- [11] X. He, M. Song and D. Chen, Common fixed points for weak commutative mappings on a multiplicative metric space, Fixed Point Theory Appl. 2014 (2014), Paper No. 48.
- [12] H. Huang, G. Deng, T. Došenović and N. Hussain, Note on recent common coupled fixed point results in multiplicative metric spaces, Appl. Math. Nonlinear Sci. 3 (2018), no. 2, 669-678.
- [13] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71-76.
- [14] P. Kumrod and W. Sintunavarat, Partial answers of the Asadi et al.’s open question on M-metric spaces with numerical results, Arab. J. Math. Sci. 24 (2018), no. 2, 134-146.
- [15] S. G. Matthews, Partial metric topology, in: Papers on General Topology and Applications, Ann. New York Acad. Sci. 728, New York Academy of Sciences, New York (1994), 183-197.
- [16] H. Monfared, M. Azhini and M. Asadi, Fixed point results on M-metric spaces, J. Math. Anal. 7 (2016), no. 5, 85-101.
- [17] C. Mongkolkeha and W. Sintunavarat, Best proximity points for multiplicative proximal contraction mapping on multiplicative metric spaces, J. Nonlinear Sci. Appl. 8 (2015), no. 6, 1134-1140.
- [18] M. Ozavsar and A. C. Cevikel, Fixed points of multiplicative contraction mappings on multiplicative metric spaces, preprint (2012), https://arxiv.org/abs/1205.5131.
- [19] S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull. 14 (1971), 121-124.
- [20] B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226 (1977), 257-290.
- [21] A. Robinson, Non-standard analysis, Indag. Math. 23 (1961), 432-440.
- [22] M. Sarwar and Badhah -e- Rome, Some unique fixed point theorems in multiplicative metric space, preprint (2014), https://arxiv.org/abs/1410.3384v2.
- [23] D. Stanley, A multiplicative calculus, Primus 9 (1999), no. 4, 310-326.
- [24] M. Tariq, M. Abbas, A. Hussain, M. Arshad, A. Ali and H. Al-Sulami, Fixed points of non-linear set-valued (α∗, ϕM)-contraction mappings and related applications, AIMS Math. 7 (2022), no. 5, 8861-8878.
- [25] B. Zada and U. Riaz, Some fixed point results on multiplicative (b)-metric-like spaces, Turkish J. Math. 4 (2016), no. 5, 118-131.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1434a35c-91d8-4466-8690-030c2eef9dff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.