Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper focuses on the identification of some plant accumulators of heavy metals that can facilitate mine remediation and rehabilitation in the Philippines and metal recovery or phytomining. Most of these hyperaccumulators are ferns that thrive very well in different terrains and of particular interest are Pityrogramma calomelanos, Pteris vittata, and Pteris melanocaulon that are abundant in abandoned CueAu mining areas. The amounts of Cu and As in the soil and in the aboveground (AG) and belowground (BG) components of the accumulator ferns were determined and the Bioaccumulation Factor (BF) and the Translocation Factor (TF) were derived. Efforts to propagate the accumulator ferns identified from spores were successful, thus providing the opportunity of using them for various experiments on mine rehabilitation and metal recovery. The results of these experiments indicated that these hyperaccumulator ferns have the greatest potential for the remediation of metal contaminated soils, the rehabilitation of abandoned mines, and phytomining.
Wydawca
Czasopismo
Rocznik
Tom
Strony
46--57
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
autor
- Department of Environmental Science, Ateneo de Manila University, Loyola Heights, Quezon City, Philippines
autor
- Department of Environmental Science, Ateneo de Manila University, Loyola Heights, Quezon City, Philippines
autor
- Department of Environmental Science, Ateneo de Manila University, Loyola Heights, Quezon City, Philippines
autor
- National Institute of Molecular Biology and Biotechnology, University of the Philippines at Los Baños, Laguna, Philippines
autor
- Department of Environmental Science, Ateneo de Manila University, Loyola Heights, Quezon City, Philippines
Bibliografia
- [1] Baker A, Whiting S. In search of the Holy Grail - a further step in understanding metal hyperaccumulation. New Phytologist 2003;155(1):1-4.
- [2] Anderson CWN, Brooks RR, Stewart RB, Robinson BH. The phytoremediation and phytomining of heavy metals. In: Proceedings PACRIM. 99; 1999. p. 127-35.
- [3] Brooks RR, Robinson BH. The potential use of hyper accumulatorand other plants for phytomining. In: Brooks RR, editor. Plants that hyperaccumulate heavy metals. Oxon, UK: CAB International; 2004. p. 261-88.
- [4] Marques AP, Rangel AO, Castro PM. Remediation of heavy metal contaminated soils: Phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 2009;39.
- [5] United States Environmental Protection Agency. Phytoremediation resource guide. 1999. p. 1-56.
- [6] Claveria RJR, Fischer HH. Petrology of part of the Ulugan Bay peridotite in central Palawan, Philippines. J Geol Soc Philippines 1991;46(1-2):15-30.
- [7] Yumul Jr GP, Dimalanta CB. Geology of the southern Zambales ophiolite complex (Philippines): Juxtaposed terranes of diversed origin. J Asian Earth Sciences 1997;15(4-5):413-21.
- [8] Ogura Y, Murata K, Iwai M. Relation between chemical components and particle size distribution of ores in the profile of nickeliferous laterite deposits of the Rio Tuba mine, Philippines. Chem Geol 1987;60(1-4):259-71.
- [9] Mitchel AHG, Balce GR. Geological reatures of some epithermal gold systems, Philippines. J Geochem Explor 1990; 35(1-3):241-96.
- [10] Association of Official Analytical Chemists. Official methods of analysis of AOAC. Arlington, VA (USA). 1995. Archive.com, http://archive.org/stream/gov.law.aoac.methods.1.1990/aoac.methods.1.1990_djvu.txt. [Accessed 15 June 2013].
- [11] Wei CY, Chen TB. Arsenic accumulation by 2 brake ferns growing on an arsenic mine and their potential in phytoremediation. Chemosphere 2006;63:1048-53.
- [12] Cui S, Zhou Q, Chao L. Potential hyperaccumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old smeltery, Northeast China. Environ Geol 2007;51(6):1043-8.
- [13] Dahmani-Muller H, Van Oort F, Balabane M. Metal extraction by arabidopsis halleri grown on an unpolluted soil amend with various metal-bearing solids: A pot experiment. Environ Pollut 2000;114:77-84.
- [14] Ondrus MG. Environmental chemistry: Experiments and demonstrations. 2nd ed. Winnepeg: Wuerz Publishing; 1996.
- [15] Claveria RJR, Perez TR, Perez REC, Algo JLC, Robles PQ. The identification of indigenous Cu and asmetallophytes in the Lepanto Cu-Au mine, Luzon, Philippines. Environ Monit Assess 2019;191:185.
- [16] Dela Torre JB, Claveria RJR, Perez REC, Perez TR, Doronila AI. Copper uptake by PterismelanocaulonF_ee from a Copper-Gold mine in Surigao del Norte, Philippines. Int J Phytoremediation 2014;18(5):434-41.
- [17] Redojevic M, Bashkin V. Practical environmental analysis. Milton Road, Cambridge: The Royal Society of Chemistry; 1999.
- [18] Yao P. The removal of heavy metal pollution with electromagnetic techniques. Providence, Rhode Island: Brown University; 2010.
- [19] Brown C. Recovery of metals from effluents by high efficiency air agitation electrowinning. Proc 73rd Tech Con Am Electroplaters Soc, Philadelphia, PA 1986.
- [20] Kachenko AG, Singh B, Bhatia NP. Heavy metal tolerance in common fern species. Aust J Bot 2007;55(1):63-73.
- [21] Patchura P, Ociepa-Kubicka A, Skowron-Grobowska B. Assessment of the availability of heavy metals to plants based on the translocation index and the bioaccumulation factor. J Desalination and Water Treat 2016;57(3):1469-77.
- [22] Dahilan JKA, Dalagan JQ. Bioavailability and accumulation assessment of copper in Pityrogramma calomelanos. Philippine J Sci 2017;146:331-8 (September).
- [23] Meharg AA. Variation in arsenic accumulation e hyperaccumulation in ferns and their allies. New Phytologist 2003; 157:31-5.
- [24] Reichman SM. The responses of plants to metal toxicity: A review focusing on copper, manganese and zinc. 2002. p. 1-54. Occasional Paper No.14.
- [25] Zheng Y, Dai X, Wang L, Xu W, He Z, Ma M. Arsenate reduces copper phytotoxicity in gametophytes of Pteris vittata. J Plant Physiol 2008;165(18):1906-16.
- [26] Lasat MM. Phytoextraction of toxic metals: A review of biological mechanisms. J Environ Quality 2002;31:109-19.
- [27] Gonzaga MIS, Santos JAG, Ma LQ. Arsenic phytoextraction and hyperaccumulation by fern species. Sci Agric 2006;63:90-101.
- [28] Zhao FJ, Dunham SJ, McGrath SP. Arsenic hyperaccumulation by different fern species. New Phytol 2003;156:27-31.
- [29] Claveria RJR, Perez TR, Apuan MJB, Apuan DA, Perez REC. Pteris melanocaulon fee is an ashyperaccumulator. Chemosphere 2019;236:124380.
- [30] Tordoff GM, Baker AJM, Willis AJ. Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 2000;41:219-28.
- [31] Apuan D, Apuan MJ, Perez TR, Claveria RJR, Perez RE, Doronila A, et al. Propagation protocol of Pteris vittata L using spores for phytoremediation. Int J Biosci 2016;8(6):14-21.
- [32] Kertulis-Tartar GM, Ma LQ, Tu C, Chirenje T. Phytoremediation of an arsenic-contaminated site using Pteris vittata L: A two-year study. Int J Phytoremediation 2006;8(4):311-22.
- [33] Xie QE, Yan XL, Liao XY, Li A. The arsenic hyperaccumulator fern PterisvittataL. Environ Sci Technol 2009; 43(22):8488-95.
- [34] Niazi NK, Singh B, Van Zwieten L, Kachenko AG. Phytoremediation potential of Pityrogramma calomelanos var. Austroamericana and Pteris vittata L. grown at a highly variable arsenic contaminated site. Int J Phytoremediation 2011;13:912-32.
- [35] Astley, D., Bawden, J., Scholes, I., Jacobi, J., Brooks, G. (1977).Electrowinning metals; U.S. Patent Number 4,039,403.United States Patent Trademark Office, USA.
- [36] Ubaldini S, Abbruzzese C, Fornari P, Luptakova A, Prascakova M. Electrowinning and bioremediation processes for toxic metals removal from acid mine drainage. Acta Metallurgica Slovaca 2006;12:405-10.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-142c2f44-fa00-419c-812a-476982f0eb22