PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An improved cardiac arrhythmia classification using an RR interval-based approach

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Accurate and early detection of cardiac arrhythmia present in an electrocardiogram (ECG) can prevent many premature deaths. Cardiac arrhythmia arises due to the improper conduction of electrical impulses throughout the heart. In this paper, we propose an improved RR interval-based cardiac arrhythmia classification approach. The Discrete Wavelet Transform (DWT) and median filters were used to remove high-frequency noise and baseline wander from the raw ECG. Next, the processed ECG was segmented after the determination of the QRS region. We extracted the primary feature RR interval and other statistical features from the beats to classify the Normal, Premature Ventricular Contraction (PVC), and Premature Atrial Contraction (PAC). The K-Nearest Neighbour (k-NN), Support Vector Machine (SVM), Decision Tree (DT), Naı¨ve Bayes (NB), and Random Forest (RF) classifier were utilised for classification. Overall performance of SVM with Gaussian kernel achieved Se % = 99.28, Sp % = 99.63, +P % = 99.28, and Acc % = 99.51, which is better than the other classifiers used in this method. The obtained results of the proposed method are significantly better and more accurate.
Twórcy
  • Department of Electronics & Communication Engineering, Rajiv Gandhi University, India
autor
  • Department of Computer Science & Engineering, Rajiv Gandhi University, India
  • School of Electronics Engineering VIT-AP University, India
  • Department of Computer Science and Engineering, Bennett University, India
Bibliografia
  • [1] Ullah A, Anwar S, Bilal M, Mehmood R. Classification of arrhythmia by using deep learning with 2-d ecg spectral image representation. Remote Sens 2020;12(10):1685.
  • [2] Organization WH. World health statistics 2016: Part ii: Global health indicators [Tech. rep.]. World Health Organization; 2016.
  • [3] Sharma LD, Sunkaria RK. Stationary wavelet transform based technique for automated external defibrillator using optimally selected classifiers. Measurement 2018;125:29–36.
  • [4] Rahul J, Sora M, Sharma LD. An overview on biomedical signal analysis. Int J Recent Technol Eng 2019;7:206–9.
  • [5] Sharma LD, Sunkaria RK. Detection and delineation of the enigmatic u-wave in an electrocardiogram. Int J Inf Technol 2019:1–8.
  • [6] Rahul J, Sora M. A novel adaptive window based technique for t wave detection and delineation in the ecg. Bio-Algorithms Med-Syst 16(1).
  • [7] Raj S, Ray KC, Shankar O. Development of robust, fast and efficient qrs complex detector: a methodological review. Australas Phys Eng Sci Med 2018;41(3):581–600.
  • [8] Sharma LD, Sunkaria RK. Novel t-wave detection technique with minimal processing and rr-interval based enhanced efficiency. Cardiovasc Eng Technol 2019;10(2):367–79.
  • [9] Coviello JS. ECG interpretation made incredibly easy! Lippincott Williams & Wilkins; 2020.
  • [10] Kusumoto F. ECG interpretation: from pathophysiology to clinical application. Springer Nature; 2020.
  • [11] Gomes JA. Signal averaged electrocardiography: concepts, methods and applications. Springer Science & Business Media; 2012.
  • [12] Kochi AN, Tagliari AP, Forleo GB, Fassini GM, Tondo C. Cardiac and arrhythmic complications in patients with covid-19. J Cardiovasc Electrophysiol 2020;31(5):1003–8.
  • [13] Houssein EH, Kilany M, Hassanien AE. Ecg signals classification: a review. Int J Intell Eng Inf 2017;5(4):376–96.
  • [14] Parvaneh S, Rubin J, Babaeizadeh S, Xu-Wilson M. Cardiac arrhythmia detection using deep learning: a review. J Electrocardiol 2019;57:S70–4.
  • [15] Çinar A, Tuncer SA. Classification of normal sinus rhythm, abnormal arrhythmia and congestive heart failure ecg signals using lstm and hybrid cnn-svm deep neural networks. Comput Methods Biomech Biomed Eng 2020:1–12.
  • [16] Jha CK, Kolekar MH. Cardiac arrhythmia classification using tunable q-wavelet transform based features and support vector machine classifier. Biomed Signal Process Control 2020;59 101875.
  • [17] Lim JS. Finding features for real-time premature ventricular contraction detection using a fuzzy neural network system. IEEE Trans Neural Networks 2009;20(3):522–7.
  • [18] Faziludeen S, Sabiq P. Ecg beat classification using wavelets and svm. In 2013 IEEE Conference on Information & Communication Technologies, IEEE, 2013. pp. 815–818.
  • [19] Sanamdikar ST, Hamde ST, Asutkar VG. Analysis and classification of cardiac arrhythmia based on general sparsed neural network of ecg signals. SN Appl Sci 2020;2(7):1–9.
  • [20] Pławiak P, Abdar M. Novel methodology for cardiac arrhythmias classification based on long-duration ecg signal fragments analysis. In Biomedical Signal Processing, Springer, 2020. pp. 225–272.
  • [21] Savalia S, Emamian V. Cardiac arrhythmia classification by multi-layer perceptron and convolution neural networks. Bioengineering 2018;5(2):35.
  • [22] Heo J, Lee JJ, Kwon S, Kim B, Hwang SO, Yoon YR. A novel method for detecting st segment elevation myocardial infarction on a 12-lead electrocardiogram with a threedimensional display. Biomed Signal Process Control 2020;56 101700.
  • [23] Jenny NZN, Faust O, Yu W. Automated classification of normal and premature ventricular contractions in electrocardiogram signals. J Med Imag Health Inf 2014;4 (6):886–92.
  • [24] Yousefi MR, Khezri M, Bagheri R, Jafari R. Automatic detection of premature ventricular contraction based on photoplethysmography using chaotic features and high order statistics. In: 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA), IEEE, 2018. pp. 1–5.
  • [25] Hock TS, Faust O, Lim T-C, Yu W. Automated detection of premature ventricular contraction using recurrence quantification analysis on heart rate signals. J Med Imag Health Inf 2013;3(3):462–9.
  • [26] Malek AS, Elnahrawy A, Anwar H, Naeem M. Automated detection of premature ventricular contraction in ecg signals using enhanced template matching algorithm. Biomed Phys Eng Express 2020;6(1) 015024.
  • [27] Khalaf AF, Owis MI, Yassine IA. A novel technique for cardiac arrhythmia classification using spectral correlation and support vector machines. Expert Syst Appl 2015;42 (21):8361–8.
  • [28] Kim J, Shin HS, Shin K, Lee M. Robust algorithm for arrhythmia classification in ecg using extreme learning machine. Biomed Eng Online 2009;8(1):31.
  • [29] Sangaiah AK, Arumugam M, Bian G-B. An intelligent learning approach for improving ecg signal classification and arrhythmia analysis. Artif Intell Med 2020;103 101788.
  • [30] Van Steenkiste G, van Loon G, Crevecoeur G. transfer learning in ecg classification from human to horse using a novel parallel neural network architecture. Scientific Rep 2020;10 (1):1–12.
  • [31] Elgendi M, Jonkman M, De Boer F. Premature atrial complexes detection using the fisher linear discriminant. In: 2008 7th IEEE International Conference on Cognitive Informatics, IEEE. p. 83–8.
  • [32] Gayathri S, Suchetha M, Latha V. Ecg arrhythmia detection and classification using relevance vector machine. Proc Eng 2012;38:1333–9.
  • [33] He R, Liu Y, Wang K, Zhao N, Yuan Y, Li Q, Zhang H. Automatic cardiac arrhythmia classification using combination of deep residual network and bidirectional lstm. IEEE Access 2019;7:102119–35.
  • [34] Tripathy RK, Zamora-Mendez A, De la O Serna JA, Paternina MRA, Arrieta JG, Naik GR. Detection of life threatening ventricular arrhythmia using digital taylor fourier transform. Front Physiol 2018;9:722.
  • [35] Xiang Y, Lin Z, Meng J. Automatic qrs complex detection using two-level convolutional neural network. Biomed Eng Online 2018;17(1):1–17.
  • [36] De Chazal P. Detection of supraventricular and ventricular ectopic beats using a single lead ecg. In Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, vol. 2013, 2013. p. 45.
  • [37] Manikandan MS, Ramkumar B, Deshpande PS, Choudhary T. Robust detection of premature ventricular contractions using sparse signal decomposition and temporal features. Healthcare Technol Lett 2015;2(6):141–8.
  • [38] Cai Z, Li J, Johnson AE, Zhang X, Shen Q, Zhang J, Liu C. Rule-based rough-refined two-step-procedure for real-time premature beat detection in single-lead ecg. Physiol Meas.
  • [39] Kirti S, Harsh J. Shruti, Multistage classification of arrhythmia and atrial fibrillation on long-term heart rate variability. J Eng Sci Technol 2020;15:1277–95.
  • [40] Arumugam M, Sangaiah AK. Arrhythmia identification and classification using wavelet centered methodology in ecg signals. Concurrency Comput: Practice Exp 2020;32(17) e5553.
  • [41] Sahoo S, Subudhi A, Dash M, Sabut S. Automatic classification of cardiac arrhythmias based on hybrid features and decision tree algorithm. Int J Autom Comput 2020:1–11.
  • [42] Leutheuser H, Gradl S, Eskofier BM, Tobola A, Lang N, Anneken L, Arnold M, Achenbach S. Arrhythmia classification using rr intervals: improvement with sinusoidal regression feature, in. In: 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN), IEEE. p. 1–5.
  • [43] Huang H, Liu J, Zhu Q, Wang R, Hu G. A new hierarchical method for inter-patient heartbeat classification using random projections and rr intervals. Biomed Eng Online 2014;13(1):90.
  • [44] Andersen RS, Peimankar A, Puthusserypady S. A deep learning approach for real-time detection of atrial fibrillation. Expert Syst Appl 2019;115:465–73.
  • [45] Moody GB, Mark RG. The impact of the mit-bih arrhythmia database. IEEE Eng Med Biol Mag 2001;20(3):45–50.
  • [46] PhysioBank P. Physionet: components of a new research resource for complex physiologic signals. Circulation v101 i23. e215–e220.
  • [47] Lin H-Y, Liang S-Y, Ho Y-L, Lin Y-H, Ma H-P. Discrete-wavelettransform-based noise removal and feature extraction for ecg signals. Irbm 2014;35(6):351–61.
  • [48] Moore AW, Jorgenson JW. Median filtering for removal of lowfrequency background drift. Anal Chem 1993;65(2):188–91.
  • [49] Sharma LD, Sunkaria RK. A robust qrs detection using novel pre-processing techniques and kurtosis based enhanced efficiency. Measurement 2016;87:194–204.
  • [50] Sharma T, Sharma KK. Qrs complex detection in ecg signals using locally adaptive weighted total variation denoising. Comput Biol Med 2017;87:187–99.
  • [51] Sharma A, Patidar S, Upadhyay A, Acharya UR. Accurate tunable-q wavelet transform based method for qrs complex detection. Comput Electr Eng 2019;75:101–11.
  • [52] Rahul J, Sora M, Sharma LD. Exploratory data analysis based efficient qrs-complex detection technique with minimal computational load. Phys Eng Sci Med 2020;43(3):1049–67.
  • [53] Spector ZZ, Meliones C, Idriss SF. arrhythmias and pacing. In: Ungerleider RM, Meliones JN, Nelson McMillan K, Cooper DS, Jacobs JP, editors. Critical Heart Disease in Infants and Children (Third Edition), 27. Philadelphia: Elsevier; 2019. p. 326–350.e3. https://doi.org/10.1016/B978-1-4557-0760- 7.00027-9. URL: https://www.sciencedirect.com/science/ article/pii/B9781455707607000279.
  • [54] Saini I, Singh D, Khosla A. Qrs detection using k-nearest neighbor algorithm (knn) and evaluation on standard ecg databases. J Adv Res 2013;4(4):331–44.
  • [55] Melgani F, Bazi Y. Classification of electrocardiogram signals with support vector machines and particle swarm optimization. IEEE Trans Inf Technol Biomed 2008;12 (5):667–77.
  • [56] Sahayadhas A, Sundaraj K, Murugappan M, Palaniappan R. A physiological measures-based method for detecting inattention in drivers using machine learning approach. Biocybern Biomed Eng 2015;35(3):198–205.
  • [57] Wieben O, Afonso VX, Tompkins WJ. Classification of premature ventricular complexes using filter bank features, induction of decision trees and a fuzzy rule-based system. Med Biol Eng Comput 1999;37(5):560–5.
  • [58] Kropf M, Hayn D, Schreier G. Ecg classification based on time and frequency domain features using random forests. In: 2017 Computing in Cardiology (CinC), IEEE, 2017. pp. 1–4.
  • [59] Porwik P, Orczyk T, Lewandowski M, Cholewa M. Feature projection k-nn classifier model for imbalanced and incomplete medical data. Biocybern Biomed Eng 2016;36 (4):644–56.
  • [60] Sharma LD, Sunkaria RK. Stationary wavelet transform based technique for automated external defibrillator using optimally selected classifiers. Measurement 2018;125:29–36.
  • [61] Aggarwal Y, Das J, Mazumder PM, Kumar R, Sinha RK. Heart rate variability features from nonlinear cardiac dynamics in identification of diabetes using artificial neural network and support vector machine. Biocybern Biomed Eng.
  • [62] Asghar MA, Khan MJ, Rizwan M, Mehmood RM, Kim S-H. An innovative multi-model neural network approach for feature selection in emotion recognition using deep feature clustering. Sensors 2020;20(13):3765.
  • [63] Wiggins M, Saad A, Litt B, Vachtsevanos G. Evolving a bayesian classifier for ecg-based age classification in medical applications. Appl Soft Comput 2008;8(1):599–608.
  • [64] Pathan S, Kumar P, Pai R, Bhandary SV. Automated detection of optic disc contours in fundus images using decision tree classifier. Biocybern Biomed Eng 2020;40(1):52–64.
  • [65] Cutler DR, Edwards Jr TC, Beard KH, Cutler A, Hess KT, Gibson J, Lawler JJ. Random forests for classification in ecology. Ecology 2007;88(11):2783–92.
  • [66] Gislason PO, Benediktsson JA, Sveinsson JR. Random forests for land cover classification. Pattern Recogn Lett 2006;27 (4):294–300.
  • [67] Bashar S, Han D, Fearass Z, Ding E, Fitzgibbons T, Walkey A, McManus D, Javidi B, Chon K. Novel density poincare plot based machine learning method to detect atrial fibrillation from premature atrial/ventricular contractions. IEEE Trans Biomed Eng.
  • [68] Inan OT, Giovangrandi L, Kovacs GT. Robust neural-networkbased classification of premature ventricular contractions using wavelet transform and timing interval features. IEEE Trans Biomed Eng 2006;53(12):2507–15.
  • [69] Chiu C-C, Lin T-H, Liau B-Y. Using correlation coefficient in ecg waveform for arrhythmia detection. Biomed Eng: Appl Basis Commun 2005;17(03):147–52.
  • [70] Liang W, Zhang Y, Tan J, Li Y. A novel approach to ecg classification based upon two-layered hmms in body sensor networks. Sensors 2014;14(4):5994–6011.
  • [71] Akin ZE, Bilgin S. Classification of normal beat, atrial premature contraction and ventricular premature contraction based on discrete wavelet transform and artificial neural networks. In: 2017 Medical Technologies National Congress (TIPTEKNO), IEEE, 2017. pp. 1–4.
  • [72] Liu X, Du H, Wang G, Zhou S, Zhang H. Automatic diagnosis of premature ventricular contraction based on lyapunov exponents and lvq neural network. Comput Methods Programs Biomed 2015;122(1):47–55.
  • [73] Jung Y, Kim H. Detection of pvc by using a wavelet-based statistical ecg monitoring procedure. Biomed Signal Process Control 2017;36:176–82.
  • [74] de Oliveira BR, de Abreu CCE, Duarte MAQ, Vieira Filho J. Geometrical features for premature ventricular contraction recognition with analytic hierarchy process based machine learning algorithms selection. Comput Methods Programs Biomed 2019;169:59–69.
  • [75] Allami R. Premature ventricular contraction analysis for realtime patient monitoring. Biomed Signal Process Control 2019;47:358–65.
  • [76] Chen X, Wang Y, Wang L, et al. Arrhythmia recognition and classification using ecg morphology and segment feature analysis. IEEE/ACM Trans Comput Biol Bioinf 2018;16 (1):131–8.
  • [77] Alarsan FI, Younes M. Analysis and classification of heart diseases using heartbeat features and machine learning algorithms. J Big Data 2019;6(1):1–15.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1425e641-5203-49e2-bf4a-44845053c3ae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.