PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Mixed boundary value problem for an anisotropic thermoelastic half-space containing thin inhomogeneities

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a rigorous and straightforward approach for obtaining the 2D boundary integral equations for a thermoelastic half-space containing holes, cracks and thin foreign inclusions. It starts from the Cauchy integral formula and the extended Stroh formalism which allows writing the general solution of thermoelastic problems in terms of certain analytic functions. In addition, with the help of it, it is possible to convert the volume integrals included in the equation into contour integrals, which, in turn, will allow the use of the method of boundary elements. For modelling of solids with thin inhomogeneities, a coupling principle for continua of different dimensions is used. Applying the theory of complex variable functions, in particular, Cauchy integral formula and Sokhotski–Plemelj formula, the Somigliana type boundary integral equations are constructed for thermoelastic anisotropic half-space. The obtained integral equations are introduced into the modified boundary element method. A numerical analysis of the influence of boundary conditions on the half-space boundary and relative rigidity of the thin inhomogeneity on the intensity of stresses at the inclusions is carried out.
Rocznik
Strony
238--244
Opis fizyczny
Bibliogr. 17 poz., wykr.
Twórcy
  • *Bialystok University of Technology, ul. Wiejska 45C, 15-351 Bialystok, Poland
  • **Lutsk National Technical University, Lvivska Str. 75, 43018 Lutsk, Ukraine
autor
  • **Lutsk National Technical University, Lvivska Str. 75, 43018 Lutsk, Ukraine
  • Ivan Franko National University of Lviv, Universytetska Str. 1, 79000 Lviv, Ukraine
Bibliografia
  • 1. Bozhydarnyk V., Pasternak I., Sulym H., Oliyarnyk N. (2011), BEM approach for the antiplane shear of anisotropic solids containing thin inhomogeneities, Acta mechanica et automatica, 5(4), 11–16.
  • 2. Chen H., Wang Q., Liu G. R., Wang Y., Sun J. (2016), Simulation of thermoelastic crack problems using singular edge-based smoothed finite element method, International Journal of Mechanical Sciences, 115–116, 123-134.
  • 3. Hou P.F. (2011), 2D general solution and fundamental solution for orthotropic thermoelastic materials, Engineering Analysis with Boundary Elements, 35, 56–60.
  • 4. Hwu C. (2010), Anisotropic elastic plates, Springer, London.
  • 5. Li X.Y. (2012), Exact fundamental thermo-elastic solutions of a transversely isotropic elastic medium with a half infinite plane crack, International Journal of Mechanical Sciences, 59(1), 83-94.
  • 6. Mukherjee Y.X. (1999), Thermoelastic fracture mechanics with regularized hypersingular boundary integral equations, Engineering Analysis with Boundary Elements, 23, 89–96.
  • 7. Pasternak I., Pasternak R., Sulym H. (2013), Boundary integral equations for 2D thermoelasticity of a half-space with cracks and thin inclusions, Engineering Analysis with Boundary Elements, 37, 1514– 1523.
  • 8. Pasternak I. (2012), Boundary integral equations and the boundary element method for fracture mechanics analysis in 2D anisotropic thermoelasticity, Engineering Analysis with Boundary Elements, 36(12), 1931–1941.
  • 9. Qin Q. (1999), Thermoelectroelastic analysis of cracks in piezoelectric half-plane by BEM, Computational Mechanics, 23, 353–360.
  • 10. Şeremet V. (2011), Deriving exact Green’s functions and integral formulas for a thermoelastic wedge, Engineering Analysis with Boundary Elements, 35(3), 527-532.
  • 11. Sherief H.H., Abd El-Latief A.M. (2014), Application of fractional order theory of thermoelasticity to a 2D problem for a half-space, Applied Mathematics and Computation, 248, 584-592.
  • 12. Shiah Y.C. (2000), Fracture mechanics analysis in 2-D anisotropic thermoelasticity using BEM, CMES, 1(3), 91–99.
  • 13. Sulym H.T. (2007), Bases of mathematical theory of thermo-elastic equilibrium of solids containing thin inclusions, Research and Publishing center of NTSh, 2007 (in Ukrainian).
  • 14. Tokovyy Y., Ma C-C. (2009), An explicit-form solution to the plane elasticity and thermoelasticity problems for anisotropic and inhomogeneous solids, Int J Solids Struct, 46(21), 3850–9.
  • 15. Woo H-G., Li H. (2011), Advanced functional materials, Springer, London.
  • 16. Wu W-L. (2009), Dual Boundary Element Method Applied to Antiplane Crack Problems, Mathematical Problems in Engineering, doi:10.1155/2009/132980.
  • 17. Yang W., Zhou Q., Zhai Yu, Lyu D., Huang Y., Wang J., Jin X., Keer M.L., Wang Q.J. (2019), Semi-analytical solution for steady state heat conduction in a heterogeneous half space with embedded cuboidal inhomogeneity, International Journal of Thermal Sciences, 139, 326-338.
Uwagi
The present paper is financially supported by the Ministry of Science and Higher Education of Poland (research project No. S/WM/4/2017) and realised in Bialystok University of Technology
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-14254291-4a6d-4886-a88f-830cba2ef276
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.