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Abstract: The paper presents a rigorous and straightforward approach for obtaining the 2D boundary integral equations for a thermoelas-
tic half-space containing holes, cracks and thin foreign inclusions. It starts from the Cauchy integral formula and the extended Stroh  
formalism which allows writing the general solution of thermoelastic problems in terms of certain analytic functions. In addition, 
 with the help of it, it is possible to convert the volume integrals included in the equation into contour integrals, which, in turn, will allow  
the use of the method of boundary elements. For modelling of solids with thin inhomogeneities, a coupling principle for continua of different 
dimensions is used. Applying the theory of complex variable functions, in particular, Cauchy integral formula and Sokhotski–Plemelj  
formula, the Somigliana type boundary integral equations are constructed for thermoelastic anisotropic half-space. The obtained integral 
equations are introduced into the modified boundary element method. A numerical analysis of the influence of boundary conditions 
 on the half-space boundary and relative rigidity of the thin inhomogeneity on the intensity of stresses at the inclusions is carried out. 

Keywords: thermoelasticity, anisotropic half-space, boundary element method, thin inclusion, crack, stress intensity factors,  
                   Stroh formalism

1. INTRODUCTION 

Modern composite materials are widely used in engineering 
structures due to their useful properties (Woo, 2011). To a large 
extent, most of them are anisotropic. It is also clear that the inter-
nal structure of most of them is not perfect. Since material fracture 
generally initiates at various defects, there is a need for the devel-
opment of analytical and numerical approaches for the analysis of 
internal physical and mechanical fields and the strength and 
reliability of the structural elements made of composite materials.  

In most cases, modelling of bulky structural elements can be 
reduced to the analysis of semi-infinite solids, for example, half-
space, since it is essential to estimate the influence of interaction 
of internal inhomogeneities with the boundary of a solid. A three-
dimensional model for solving steady-state heat conduction in a 
semi-infinite domain containing an elementary cuboidal inhomo-
geneity was established by Yang et al. (2019). Three-dimensional 
exact fundamental solutions of the thermoelastic field in a trans-
versely isotropic elastic medium weakened by a half infinite plane 
crack subjected to a pair of point thermal loadings symmetrically 
acting on the crack surface were presented by Li (2012). Sherief 
et al. (2014) applied the fractional order theory of thermoelasticity 
to a two-dimensional problem for a half-space. Şeremet (2011) 
derived the exact Green’s function and a Poisson-type integral 
formula for a boundary-value problem (BVP) for a thermoelastic 
wedge, half-space and quarter-space. For solving two-
dimensional thermoelastic crack problems, Chen et al. (2016) 
used singular edge-based smoothed finite element method (ES-
FEM).  

The jump function method is convenient and effective in simu-
lation of thin inhomogeneities (Sulym, 2007). The idea of this 

method is that the inclusion as a geometric object is excluded 
from consideration, and its effect is reduced to introduction of 
certain functions of the jump of physical and mechanical fields in 
the medium while passing the median surface of the thin-walled 
inhomogeneity. 

The boundary element method (BEM) perfectly suits for solv-
ing the stress concentration and fracture mechanics problems due 
to its high precision and efficiency (Bozhydarnyk et al., 2011; Hou, 
2011; Qin, 1999; Shiah, 2000). Tokovyy and Ma (2009) obtained 
the Volterra integral equations of thermoelasticity for the ortho-
tropic plane, half-plane and a strip. However, in the presence of 
thermal effects, there are additional volume integral terms in 
integral equations that fully reduce the advantages of BEM. In the 
case of isotropic solids, these volume integrals can be easily 
converted to boundary ones (Mukherjee, 1999). However, in the 
case of anisotropy, transformation of the volume integral into the 
contour one is a difficult task. For the first time, in the case of a 
plane thermoelasticity problem, the temperature volume integral 
was reduced to the contour one in the real domain in Pasternak 
(2012). 

The abovementioned works consider mainly half-space with 
traction-free thermally insulated surface. However, in most of the 
engineering problems, especially those of contact mechanics, 
mixed thermomechanical boundary conditions should be consid-
ered, that is, at the half-space boundary given are some compo-
nents of traction vector and some components of displacement 
vector. For example, if the half-space boundary x2 = 0 rests on 

the smooth rigid basement, the component u2 of displacement 

vector and the component t1 of traction vector are zero. Such 
problems for thermoelastic anisotropic half-space are not found in 
scientific literature. 
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In this paper, the methods based on the complex variable cal-
culus, the Stroh formalism, the jump function method and the 
BEM (Pasternak, 2012; Pasternak et al., 2013) are used to obtain 
new integral formulas and equations for anisotropic thermoelastic 
half-space with holes, cracks and thin deformable inclusions, 
taking into account all possible mixed mechanical and thermal 
boundary conditions on its boundary. 

2. GOVERNING EQUATIONS OF THERMOELASTICITY 

Consider a solid resting in a fixed rectangular coordinate sys-
tem 𝑂𝑥1𝑥2𝑥3. According to Hwu (2010), the equilibrium equation, 
the equation of thermal balance, as well as the constitutive equa-
tions of plain strain of a linearly thermoelastic body and of plane 
stationary heat conductivity are written as: 

𝜎𝑖𝑗,𝑗 = 0, ℎ𝑖,𝑖 = 0, (𝑖, 𝑗 = 1,2,3); (1) 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑚휀𝑘𝑚 − 𝛽𝑖𝑗𝜃, ℎ𝑖 = −𝑘𝑖𝑗𝜃,𝑗, (2) 

where 휀𝑖𝑗 = (𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)/2 is a strain tensor, 𝜎𝑖𝑗  is a stress 

tensor, ℎ𝑖 is a heat flux vector, 𝑢𝑖 is a displacement vector, 𝜃 is 
the change in temperature compared with the reference one, 
𝐶𝑖𝑗𝑘𝑚  are the elastic moduli, 𝑘𝑖𝑗  are the heat conduction coeffi-

cients, 𝛽𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑚𝛼𝑘𝑚 (𝑖, 𝑗, 𝑘, 𝑚 = 1, … ,3) are the thermal 

moduli and 𝛼𝑖𝑗  are the thermal expansion coefficients. The ten-

sors 𝐶𝑖𝑗𝑘𝑚, 𝑘𝑖𝑗 , 𝛼𝑖𝑗  and 𝛽𝑖𝑗  are fully symmetric. Here and further, 

the Einstein summation convention is used. Using the generalised 
Stroh formalism, it is possible to derive the following 
dependences:  

𝜃 = 2Re{𝑔′(𝑧𝑡)}, 𝜗 = 2𝑘𝑡Im{𝑔′(𝑧𝑡)}, ℎ1 = −𝜗,2, ℎ2 = 𝜗,1, 𝑘𝑡 =

√𝑘11𝑘22 − 𝑘12
2, 𝐮 = 2Re[𝐀𝐟(𝑧∗) + 𝐜𝑔(𝑧𝑡)], 𝛗 = 2Re[𝐁𝐟(𝑧∗) +

𝐝𝑔(𝑧𝑡)], 𝜎𝑖1 = −𝜑𝑖,2, 𝜎𝑖2 = 𝜑𝑖,1; 𝑧𝑡 = 𝑥1 + 𝑝𝑡𝑥2, 𝑧𝛼 = 𝑥1 +

𝑝𝛼𝑥2, 𝐟(𝑧∗) = [𝐹1(𝑧1), 𝐹2(𝑧2), 𝐹3(𝑧3)]𝐓, (3) 

where 𝜗 is a heat flux function, 𝐹𝛼(𝑧𝛼) and 𝑔(𝑧𝑡) are the 
complex analytic functions with respect to their arguments and the 
complex constant 𝑝𝑡 is a root (with a positive imaginary part) of 
the characteristic equation for heat conduction 
𝑘22𝑝𝑡

2 + 2𝑘12𝑝𝑡 + 𝑘11 = 0.  

Constant complex matrices 𝐀, 𝐁, vectors 𝐜, 𝐝 and scalars 

𝑝𝛼(𝛼 = 1,2,3) are determined from the extended Stroh 
eigenvalue problem. 

The relationship between the Stroh's complex potentials and 
vector functions of displacements and stresses is given by the 
following relations: 

𝐟(𝑧∗) = 𝐁T𝐮 + 𝐀T𝛗 − 𝑩T𝐮𝑡 − 𝐀T𝛗𝑡 , 

𝐮t = 2Re{𝐜𝑔(𝑧𝑡)}, 𝛗t = 2Re{𝐝𝑔(𝑧𝑡)}. (4) 

Based on Eq. (3), one can derive the following relation between 

the function 𝑔′(𝑧𝑡), temperature and heat flux function 

𝑔′(𝑧𝑡) =
1

2
(𝜃 + 𝑖

𝜗

𝑘𝑡
). (5) 

3. DERIVATION OF INTEGRAL FORMULAE  
FOR THE STROH COMPLEX FUNCTIONS 

For thermoelastic half-space 𝑥2 > 0 containing a system 
of holes bounded with smooth closed contours 𝛤 = ⋃ 𝛤𝑖𝑖 , the 
following dependencies are derived: 

 

𝐟(𝑧∗) =
1

2𝜋𝑖
∫ ⟨

𝑑𝜏∗

𝜏∗−𝑧∗
⟩ 𝐟(𝜏∗)

𝛤
+

1

2𝜋𝑖
∫ ⟨

𝑑𝑥1

𝑥1−𝑧∗
⟩ 𝐟(𝑥1),

∞

−∞
 (Im 𝑧∗ > 0),(6) 

where ⟨𝐹(𝑧∗)⟩ = diag[𝐹1(𝑧1), 𝐹2(𝑧2), 𝐹3(𝑧3)].  
It is obvious that outside the half-space, Cauchy integrals (6) 

are equal to zero. Therefore, for external points 𝑧∗̅ (Im 𝑧∗ > 0), 
Eq. (6) is writes as: 

 

1

2𝜋𝑖
∫ ⟨

𝑑𝜏∗

𝜏∗−�̅�∗
⟩ 𝐟(𝜏∗)

𝛤
+

1

2𝜋𝑖
∫ ⟨

𝑑𝑥1

𝑥1−�̅�∗
⟩ 𝐟(𝑥1)

∞

−∞
= 0, (Im 𝑧∗ > 0). (7) 

 

Integral representations in Eqs (6) and (7) include linear 
integrals along the infinite half-space boundary that are 
inconvenient for further calculations. To exclude them from 
consideration, we will use four different types of boundary 
conditions on the half-space boundary: 

 

𝜗(𝑥1) = 0 (𝑥2 = 0); (8a) 
 

𝜃(𝑥1) = 0 (𝑥2 = 0); (8b) 
 

𝑢1(𝑥1) = 0, 𝜑2(𝑥1) = 0 (𝑥2 = 0); (8c) 
 

𝑢2(𝑥1) = 0, 𝜑1(𝑥1) = 0 (𝑥2 = 0). (8d) 

3.1. Heat conduction  

According to the boundary conditions in Eq. (8a) and Eq. (5), 
the integral formula for the function 𝑔′(𝑧𝑡) can be rewritten as 
follows: 

 

𝑔′(𝑧𝑡) =
1

2𝜋𝑖
∫

𝑔′(𝜏𝑡)𝑑𝜏𝑡

𝜏𝑡−𝑧𝑡𝛤
+

1

4𝜋𝑘𝑡
∫

𝜗(𝑥1)𝑑𝑥1

𝑥1−𝑧𝑡

∞

−∞
. (9) 

 

Having calculated the complex conjugate expression for the 
Cauchy integral and using Eqs (6) and (5), we obtain the integral 
value along the half-space boundary: 

 

1

4𝜋𝑖
∫

𝜃(𝑥1)𝑑𝑥1

𝑥1−𝑧𝑡

∞

−∞
= −

1

2𝜋𝑖
∫

𝑔′(𝜏𝑡)𝑑�̅�𝑡

�̅�𝑡−𝑧𝑡𝛤
 . (10) 

 

Substituting Eq. (10) into (9), one obtains the integral formula 
for a complex function 𝑔′(𝑧𝑡). 

 

𝑔′(𝑧𝑡) =
1

2𝜋𝑖
[∫

𝑔′(𝜏𝑡)𝑑𝜏𝑡

𝜏𝑡−𝑧𝑡𝛤
− ∫

𝑔′(𝜏𝑡)𝑑�̅�𝑡

�̅�𝑡−𝑧𝑡𝛤
].    (11) 

 

Using Eq. (5), we can construct an integral representation of 
a function 𝑔′(𝑧𝑡) using the boundary values of physical 
parameters 𝜗 and 𝜃: 

 

𝑔′(𝑧𝑡) =
1

4𝜋𝑖
[∫

(𝜃+𝑖
𝜗

𝑘𝑡
)𝑑𝜏𝑡

𝜏𝑡−𝑧𝑡𝛤
− ∫

(𝜃−𝑖
𝜗

𝑘𝑡
)𝑑�̅�𝑡

�̅�𝑡−𝑧𝑡𝛤
]. (12) 

 

Eq. (12) can be reduced to the first-order curvilinear integrals: 
 

𝑔′(𝑧𝑡) = −
1

4𝜋𝑖
∫ [

𝑛2(𝑠)−𝑝𝑡𝑛1(𝑠)

𝜏𝑡(𝑠)−𝑧𝑡
−

𝑛2(𝑠)−�̅�𝑡𝑛1(𝑠)

�̅�𝑡(𝑠)−𝑧𝑡
] 𝜃(𝑠)𝑑𝑠

𝛤
  

+
1

4𝜋𝑘𝑡
∫ [ln(𝜏𝑡(𝑠) − 𝑧𝑡) + ln(�̅�𝑡(𝑠) − 𝑧𝑡)]ℎ𝑛(𝑠)𝑑𝑠

𝛤
. (13) 

 

Based on Eqs (8) and (13), we obtain integral representations 
for temperature and heat flux at an arbitrary point 𝛏 in the half-
space 𝑥2 > 0: 

 

𝜃(𝛏) = 2Re{𝑔′(𝑍𝑡(𝛏))} 

= ∫ [𝛩ℎ𝑠∗(𝐱, 𝛏)ℎ𝑛(𝐱) − 𝐻ℎ𝑠∗(𝐱,ξ)𝜃(𝐱)]𝑑𝑠(𝐱)
Γ

, (14) 
 

ℎ𝑖(𝛏) = 2𝑘𝑡Im{(𝛿2𝑖 − 𝛿1𝑖𝑝𝑡)𝑔′′(𝑍𝑡(𝛏))} 

= ∫ 𝛩𝑖
ℎ𝑠∗∗(𝐱, 𝛏)ℎ𝑛(𝐱)𝑑𝛤(𝐱)

Γ
− ∫ 𝐻𝑖

ℎ𝑠∗∗(𝐱, 𝛏)𝜃(𝐱)𝑑𝑠(𝐱)
Γ

, (15) 

where the kernels are defined as: 
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𝛩ℎ𝑠∗(𝐱, 𝛏) =
1

2𝜋𝑘𝑡

[ln|𝑍𝑡(𝐱 − 𝛏)| + ln|�̅�𝑡(𝐱) − 𝑍𝑡(𝛏)|], (16) 
 

Hℎ𝑠∗(𝐱, 𝛏) =
1

2𝜋
Im {

𝑛2(𝐱)−𝑝𝑡𝑛1(𝐱)

𝑍𝑡(𝐱−𝛏)
−

𝑛2(𝐱)−𝑝𝑡𝑛1(𝐱)

𝑍𝑡(𝐱)−𝑍𝑡(𝛏)
},  (17) 

 

Θ𝑖
ℎ𝑠∗∗

= −
1

2𝜋
Im {

𝛿𝑖2−𝑝𝑡𝛿𝑖1

𝑍𝑡(𝐱−𝛏)
+

𝛿𝑖2−𝑝𝑡𝛿𝑖1

𝑍𝑡(𝐱)−𝑍𝑡(𝛏)
}, (18) 

 

H𝑖
ℎ𝑠∗∗ = −

𝑘𝑡

2𝜋
Re{(𝛿𝑖2 − 𝑝𝑡𝛿𝑖1)  

× [
𝑛2(𝐱)−𝑝𝑡𝑛1(𝐱)

[𝑍𝑡(𝐱−𝛏)]2
−

𝑛2(𝐱)−𝑝𝑡𝑛1(𝐱)

[𝑍𝑡(𝐱)−𝑍𝑡(𝛏)]2
]} . (19) 

 

Here, 𝑍∗(𝐱) = 𝑥1 + 𝑝∗𝑥2. 

3.2. Thermoelasticity 

Using the boundary conditions (8c) and (8d) and 
representation of complex potentials in Eq. (4), we can rewrite the 
integral along the boundary of the half-space in Eq. (6) as follows: 

∫ ⟨
𝑑𝑥1

𝑥1−𝑧∗
⟩ 𝐟(𝑥1)

∞

−∞
= ∫ ⟨

𝑑𝑥1

𝑥1−𝑧∗
⟩ [𝐁T𝐮

∞

−∞
+ 𝐀T𝛗  

−𝐁T𝐮𝑡(𝑥1) − 𝐀T𝛗𝑡(𝑥1).  (20) 

As a result of integration by parts of Eq. (20) and the limitation 
of functions 𝐮𝑡(𝑥1) and 𝛗𝑡(𝑥1), we obtain the following equation. 

∫ ⟨
𝑑𝑥1

𝑥1−𝑧∗
⟩ 𝐟(𝑥1)

∞

−∞
= ∫ ⟨

𝑑𝑥1

𝑥1−𝑧∗
⟩ 𝐀T𝛗

∞

−∞
+ ∫ ⟨

𝑑𝑥1

𝑥1−𝑧∗
⟩ 𝐁T𝐮

∞

−∞
  

+ ∫ ⟨ln(𝑥1 − 𝑧∗)⟩ [𝐁T 𝜕𝐮𝐭(𝑥1)

𝜕𝑥1
+ 𝐀T 𝜕𝛗𝑡(𝑥1)

𝜕𝑥1
] 𝑑𝑥1

∞

−∞
.  (21) 

Now consider that, according to Eqs (5) and (6) and the 
boundary conditions in Eqs (8a) and (8c): 

𝐁T 𝜕𝐮𝑡(𝑥1)

𝜕𝑥1
+ 𝐀T 𝜕𝛗𝑡(𝑥1)

𝜕𝑥1
= 𝐦𝜃, (22) 

where 

𝐦 = 𝐁TRe[𝐜] + 𝐀TRe[𝐝].  (23) 

Therefore, the Cauchy integral in Eq. (21) is written as 

∫ ⟨
𝑑𝑥1

𝑥1−𝑧∗
⟩ 𝐟(𝑥1)

∞

−∞
= ∫ ⟨

𝑑𝑥1

𝑥1−𝑧∗
⟩ 𝐀T𝛗

∞

−∞
+ ∫ ⟨

𝑑𝑥1

𝑥1−𝑧∗
⟩ 𝐁T𝐮

∞

−∞
  

+ ∫ ⟨ln(𝑥1 − 𝑧∗)⟩𝐦𝜃(𝑥1)𝑑𝑥1
∞

−∞
. (24)  

Substituting Eq. (24) in Eq. (7), we can write: 

∫ ⟨
𝑑𝑥1

𝑥1−�̅�∗
⟩ [𝐀T𝛗

∞

−∞
+ BT𝐮] = − ∫ ⟨

𝑑𝜏∗

𝜏∗−�̅�∗
⟩ 𝐟(𝜏∗)

𝛤
  

− ∫ ⟨ln(𝑥1 − 𝑧∗̅)⟩𝐦𝜃(𝑥1)𝑑𝑥1
∞

−∞
. (25) 

Let us introduce the notation 𝐀T𝛗 + 𝐁T𝐮 = 𝐂𝐗, where 

𝐗 = (
𝐮
𝛗), 𝐂 is a square matrix that will be formed on the basis of 

the matrix (𝐁T𝐀T). 
Now we can rewrite Eq. (25) in a slightly different manner: 

∫ ⟨
𝑑𝑥1

𝑥1−�̅�∗
⟩ [𝐀T𝛗

∞

−∞
+ 𝐁T𝐮] = ∫ ⟨

𝑑𝑥1

𝑥1−�̅�∗
⟩ 𝐂

∞

−∞
𝐗  

= − ∫ ⟨
𝑑𝜏∗

𝜏∗ − 𝑧∗̅
⟩ 𝐟(𝜏∗)

𝛤

− ∫ ⟨ln(𝑥1 − 𝑧∗̅)⟩𝐦𝜃(𝑥1)𝑑𝑥1

∞

−∞

 

or in complex conjugate form 

∫ ⟨
𝑑𝑥1

𝑥1−𝑧∗
⟩ 𝐂𝐗

∞

−∞
= ∫ ⟨

𝑑𝑥1

𝑥1−�̅�∗
⟩

∞

−∞
[𝐀

T
𝛗 + 𝐁

T
𝐮]  

= − ∫ ⟨
𝑑�̅�∗

�̅�∗−𝑧∗
⟩ 𝐟(𝜏∗)

𝛤
− ∫ ⟨ln(𝑥1 − 𝑧∗)⟩�̅�𝜃(𝑥1)𝑑𝑥1

∞

−∞
.  (26) 

Accounting for the Stroh orthogonality relations, the first 
integral on the right side of Eq. (24) can be represented as 

∫ ⟨
𝑑𝑥1

𝑥1−𝑧∗
⟩ [𝐀T𝛟 + 𝐁T𝐮]

∞

−∞
= ∫ ⟨

𝑑𝑥1

𝑥1−𝑧∗
⟩ 𝐂𝐗

∞

−∞
  

= − ∑ 𝐈𝛽𝐂𝐂
−1

∫ ⟨
𝑑𝑥1

𝑥1−𝑧𝛽
⟩ 𝐂𝐗

∞

−∞
3
𝛽=1 . (27) 

Here, 𝐈1 = diag[1,0,0], 𝐈2 = diag[0,1,0] and 𝐈3 = diag[0,0,1]. 

Substituting Eq. (26) into Eq. (27) and taking into account the 
value received, Eq. (24) takes the form 

∫ ⟨
𝑑𝑥1

𝑥1−𝑧∗
⟩ 𝐟(𝑥1)

∞

−∞
= ∑ ∫ ⟨

𝑑�̅�𝛽

�̅�𝛽−𝑧∗
⟩ 𝐂−1𝐂𝐈𝛽𝐟(𝜏∗)

𝛤
3
𝛽=1   

 + ∫ ⟨ln(𝑥1 − 𝑧∗)⟩[𝐦 + 𝐂−1𝐂�̅�]𝜃(𝑥1)𝑑𝑥1
∞

−∞
,  (28) 

and integrating Eq. (10) gives 

∫ ⟨ln(𝑥1 − 𝑧∗)⟩𝜃(𝑥1)𝑑𝑥1
∞

−∞
= −2 ∫ ⟨ln(�̅�𝑡 − 𝑧∗)⟩𝑔′(𝜏𝑡)𝑑�̅�𝑡𝛤

. (29) 

Therefore, the integral formula in Eq. (7) can be written in the 
form which does not contains integrals along the boundary of the 
half-space 

𝐟(𝑧∗) =
1

2𝜋𝑖
[∫ ⟨

𝑑𝜏∗

𝜏∗−𝑧∗
⟩ 𝐟(𝜏∗)

𝛤
+ ∑ ∫ ⟨

𝑑�̅�𝛽

�̅�𝛽−𝑧∗
⟩ 𝐂−1𝐂𝐈𝛽𝐟(𝜏∗)

𝛤
3
𝛽=1   

−2 ∫ ⟨ln(�̅�𝑡 − 𝑧∗)⟩[𝐦 + 𝐂−1𝐂�̅�]𝑑�̅�𝑡Γ
].  (30) 

Using Eqs (4) and (5), the integral formula in Eq. (30) takes 
the form: 

𝐟(𝑧∗) =
1

2𝜋𝑖
[− ∫ [⟨

𝑛2(𝑠) − 𝑝∗𝑛1(𝑠)

𝜏∗(𝑠) − 𝑧∗
⟩ 𝐁T

𝛤

 

+ ∑ ⟨
𝑛2(𝑠) − �̅�𝛽𝑛1(𝑠)

�̅�𝛽(𝑠) − 𝑧∗
⟩ 𝐂−1𝐂𝐈𝛽�̅�T

3

𝛽=1

] 𝐮(𝑠)𝑑𝑠 

+ ∫[⟨ln(𝜏∗(𝑠) − 𝑧∗)⟩𝐀T

𝛤

 

+ ∑⟨ln(�̅�𝛽(𝑠) − 𝑧∗)⟩𝐂−1𝐂𝐈𝛽�̅�T

3

𝛽=1

] 𝐭(𝑠)𝑑𝑠 

− ∫⟨ln(𝜏∗(𝑠) − 𝑧∗)⟩(𝐀TRe[𝐝(𝑛2 − 𝑛1𝑝𝑡)]

𝛤

 

+𝐁TRe[𝐜(𝑛2 − 𝑛1𝑝𝑡)])𝜃(𝑠)𝑑𝑠                                                       (31) 

− ∫ ∑⟨ln(�̅�𝛽(𝑠) − 𝑧∗)⟩𝐂−1𝐂𝐈𝛽(�̅�TRe[𝐝(𝑛2 − 𝑛1𝑝𝑡)]

3

𝛽=1𝛤

 

+�̅�TRe[𝐜(𝑛2 − 𝑛1𝑝𝑡)])𝜃(𝑠)𝑑𝑠 

− ∫⟨ln(�̅�𝑡(𝑠) − 𝑧∗)⟩[𝑛2(𝑠) − �̅�𝑡𝑛1(𝑠)][𝐦 + 𝐂−1𝐂�̅�]𝜃(𝑠)𝑑𝑠

𝛤

 

−
1

𝑘𝑡
∫⟨𝑓∗(𝜏∗(𝑠) − 𝑧∗)⟩(𝐀TIm[𝐝] + 𝐁TIm[𝐜])ℎ𝑛(𝑠)𝑑𝑠

𝛤

 

+
1

𝑘𝑡
∫⟨𝑓∗(�̅�𝑡 − 𝑧∗)⟩[𝐦 + 𝐂−1𝐂�̅�]ℎ𝑛(𝑠)𝑑𝑠

Γ

 

−
1

𝑘𝑡
∫ ∑⟨𝑓∗(�̅�𝛽(𝑠) − 𝑧∗)⟩𝐂−1𝐂𝐈𝛽

3

𝛽=1Γ

 

× (�̅�TIm[𝐝] + �̅�TIm[𝐜])ℎ𝑛(𝑠)𝑑𝑠.  
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Based on Eqs (3), (9) and (31), one can derive the following 
Somigliana type integral identity for extended displacement at the 
arbitrary point 𝛏 of thermoelastic half-space: 

𝐮(𝛏) = 2Re{𝐀𝐟(𝑍∗(𝛏)) + 𝐜𝑔(𝑍𝑡(𝛏))} = ∫[

Γ

𝐔ℎ𝑠(𝐱, 𝛏)𝐭(𝐱) 

−𝐓hs(𝐱, 𝛏)𝐮(𝐱) + 𝐫ℎ𝑠(𝐱, 𝛏)𝜃(𝐱) + 𝐯ℎ𝑠(𝐱, 𝛏)ℎ𝑛(𝐱)]𝑑𝑠(𝐱). (32) 

Here, the kernels are defined as: 

𝐔ℎ𝑠(𝐱, 𝛏) =
1

𝜋
Im[𝐀⟨lnZ∗(𝐱 − 𝛏)⟩𝐀T  

+𝐀 ∑ ⟨ln (�̅�𝛽(𝐱) − 𝑍∗(𝛏))⟩ 𝐂−1𝐂𝐈𝛽�̅�T3
𝛽=1 ]; (33) 

𝐯ℎ𝑠(𝐱, 𝛏) = −
1

𝜋𝑘𝑡
Im[𝐀⟨𝑓∗(𝑍∗(𝐱 − 𝛏))⟩(𝐀TIm[𝐝] 

−𝐁TIm[𝐜])] −
1

𝜋𝑘𝑡
Im [∑ 𝐀 ⟨𝑓∗ (�̅�𝛽(𝐱) − 𝑍∗(𝛏))⟩ 𝐂−1𝐂𝐈𝛽

3

𝛽=1

 

× (�̅�TIm[𝐝] + �̅�TIm[𝐜])] −
1

2𝜋𝑘𝑡
Re[𝐜[𝑓∗(𝑍𝑡(𝐱 − 𝛏)) 

+ 𝑓∗(�̅�𝑡(𝐱) − 𝑍𝑡(𝛏))]] +
1

𝜋𝑘𝑡
Re[𝐀⟨𝑓∗(�̅�𝑡(𝐱) − 𝑍∗(𝛏))⟩ 

× (𝐦 + 𝐂−1𝐂�̅�)]; (34) 

𝐓ℎ𝑠(𝐱, 𝛏) =
1

𝜋
Im[𝐀 ⟨

𝑛2(𝐱) − 𝑝∗𝑛1(𝐱)

𝑍∗(𝐱 − 𝛏)
⟩ 𝐁T 

+𝐀 ∑ ⟨
𝑛2(𝐱)−𝑝𝛽𝑛1(𝐱)

𝑍𝛽(𝐱)−𝑍∗(𝛏)
⟩ 𝐈β𝐂−1𝐂3

𝛽=1 𝐁
T

] and (35) 

𝐫𝑖
ℎ𝑠(𝐱, 𝛏) = −

1

𝜋
Im[𝐀⟨ln𝑍∗(𝐱 − 𝛏)⟩(𝐀TRe{𝐝(𝑛2 − 𝑝𝑡𝑛1)} 

+𝐁TRe{𝐜(𝑛2 − 𝑝𝑡𝑛1)})] −
1

𝜋
Im ∑[𝐀 ⟨ln (𝑍𝛽(𝐱) − 𝑍∗(𝛏))⟩

3

𝛽=1

 

× 𝐂−1𝐂𝐈𝛽(�̅�TRe{𝐝(𝑛2 − 𝑝𝑡𝑛1)} + 𝐁
T

Re{𝐜(𝑛2 − 𝑝𝑡𝑛1)})] 

−
1

𝜋
Im[𝐀⟨ln(�̅�𝑡(𝐱) − 𝑍∗(𝛏))⟩𝐀−1Re[𝐜](𝑛2 − 𝑝

𝑡
𝑛1)] 

+
1

𝜋
[𝐜[𝑛2 − 𝑝𝑡𝑛1]ln𝑍𝑡(𝐱 − 𝛏) 

−(𝑛2 − 𝑝
𝑡
𝑛1)ln(�̅�𝑡(𝐱) − 𝑍∗(𝛏))]]. (36) 

Here, 𝑍∗(𝐱) = 𝑥1 + 𝑝∗𝑥2. 

Eqs (5), (13) and (31) yield the following integral formula for 
the components of the extended stress tensor: 

𝛔j(𝛏) = [σij(𝛏)] = 2Re{𝐁(𝛿2𝑗 − 𝛿1𝑗𝑃)𝐟′(𝑍∗(𝛏)) 

+𝐝(𝛿2𝑗 − 𝛿1𝑗𝑝𝑡)𝑔′(𝑍𝑡(𝛏))} = ∫ 𝐃𝑗
ℎ𝑠(𝐱, 𝛏)𝐭(𝐱)𝑑𝑠(𝐱)

𝛤

 

− ∫ 𝐒𝑗
ℎ𝑠(𝐱, 𝛏)𝐮(𝐱)𝑑𝑠(𝐱)

𝛤

+ ∫ 𝐪𝑗
ℎ𝑠(𝐱, 𝛏)𝜃(𝐱)𝑑𝑠(𝐱)

𝛤

 

+ ∫ 𝐰𝑗
ℎ𝑠(𝐱, 𝛏)ℎ𝑛(𝐱)𝑑𝑠(𝐱)

Γ
. (37) 

Here  

𝐪𝑖𝑗
ℎ𝑠(𝐱, 𝛏) = −

1

𝜋
Im {𝐁 ⟨

𝛿2𝑗 − 𝑝∗𝛿1𝑗

𝑍∗(𝐱 − 𝛏)
⟩     

× (𝐀TRe{𝐝(𝑛2 − 𝑝𝑡𝑛1)} + 𝐁TRe{𝐜(𝑛2 − 𝑝𝑡𝑛1)})} 

1

𝜋
Im {𝐁 ∑

𝛿2𝑗 − 𝑝∗𝛿1𝑗

𝑍𝛽(𝐱) − 𝑍∗(𝛏)

3

𝛽=1

𝐂−1𝐂𝐈𝛽 

× (𝐀
T

Re{𝐝(𝑛2 − 𝑝𝑡𝑛1)} + 𝐁
T

Re{𝐜(𝑛2 − 𝑝𝑡𝑛1)})} 

−
1

𝜋
Im {𝐁 ⟨

𝛿2𝑗 − 𝑝∗𝛿1𝑗

𝑍𝛽(𝐱) − 𝑍∗(𝛏)
⟩ 𝐀−1Re[𝐜](𝑛2 − 𝑝

𝑡
𝑛1)} 

−
1

2𝜋
Im {𝐝(𝛿2𝑗 − 𝑝∗𝛿1𝑗) [

𝛿2𝑗 − 𝑝∗𝛿1𝑗

𝑍∗(𝐱 − 𝛏)
−

𝛿2𝑗 − 𝑝
∗
𝛿1𝑗

𝑍𝑡(𝐱) − 𝑍𝑡(𝛏)
]} ; 

𝐰𝑖𝑗
ℎ𝑠(𝐱, 𝛏) =

1

𝜋𝑘𝑡
Im[−𝐁⟨(𝛿2𝑗 − 𝛿1𝑗P∗)ln𝑍∗(𝐱 − 𝛏)⟩ 

× (𝐁TIm[𝐜] + 𝐀TIm[𝐝])] 

+
1

𝜋𝑘𝑡
Im [∑ 𝐁⟨(𝛿2𝑗 − 𝛿1𝑗P∗)ln𝑍𝛽(𝐱) − 𝑍∗(𝛏)⟩

3

𝛽=1

 

× 𝐂−1𝐂𝐈𝛽 (𝐁
T

Im[𝐜] + 𝐀
T

Im[𝐝])] 

−
1

𝜋𝑘𝑡
Re [∑ 𝐁⟨(𝛿2𝑗 − 𝛿1𝑗P∗)ln𝑍𝑡(𝐱) − 𝑍∗(𝛏))⟩

3

𝛽=1

𝐀−1Re[𝐜]] 

+
1

2𝜋𝑘𝑡
Re[𝐝(𝛿2𝑗 − 𝛿1𝑗P𝑡(ln𝑍𝑡(𝐱 − 𝛏) + ln(𝑍𝑡(𝐱) − ln𝑍𝑡(𝛏)))]; 

𝐃𝑖𝑗𝑘
ℎ𝑠 (𝐱, 𝛏) = −

1

𝜋
Im {𝐁 [⟨

𝛿2𝑗 − 𝑝∗𝛿2𝑗

𝑍∗(𝐱 − 𝛏)
⟩ 𝐀T 

+ ∑ ⟨
𝛿2𝑗 − 𝑝∗𝛿1𝑗

𝑍𝛽(𝐱) − 𝑍∗(𝛏)
⟩

4

𝛽=1

𝐂−1𝐂𝐈𝛽𝐀
T

]}  and 

𝐒𝑖𝑗𝑘
ℎ𝑠 (𝐱, 𝛏) =

1

𝜋
Im {𝐁 ⟨

(𝛿2𝑗 − 𝑝∗𝛿1𝑗)(𝑛2 − 𝑝∗𝑛1)

(𝑍∗(𝐱 − 𝛏))2
⟩ 𝐁T} 

+
1

𝜋
Im{𝐁(𝛿2𝑗 − 𝑝∗𝛿1𝑗)

 × ∑ ⟨
(𝑛2−𝑝∗𝑛1)

(𝑍𝛽(𝐱)−𝑍∗(𝛏))
2⟩4

𝛽=1 𝐂−1𝐂𝐈𝛽𝐁
T

}. (38) 

Thus, for the problem with boundary conditions in Eqs (8a) 
and (8c), appropriate integral representations can be obtained. 

4. NUMERICAL EXAMPLES 

Sample problem is considered for an anisotropic (fibreglass) 
thermoelastic half-plane x2 > 0 under the action of a uniform heat 
flow directed along its boundary, which contains internal thin, 
rectilinear thermoelastic isotropic inclusion (Fig. 1). Its length is 
𝑙 = 2𝑎 and thickness is ℎ = 0,01𝑎, and it is located at a distance 

𝑑 = 𝑎 to the edge of the half-space. Properties of the half-space 
are as follows: 𝐸1 = 55 GPa, 𝐸2 = 21 GPa, 𝐺12 = 9.7 GPa, 

𝜈12 = 0.25, 𝛼11 = 6.3 × 10−6 К−1, 𝛼22 = 2.0 × 10−5 К−1, 

𝑘11 = 3.46 W/(m∙K) and 𝑘22 = 0.35 W/(m∙K). The values of these 
constants are given in the direction of the main axes of the 
anisotropy of the material. Inclusion is assumed to be thermally 
insulated and possesses no thermal expansion. 

 
Fig. 1. Thermoelastic anisotropic half-plane with thin inclusion 

Figs 2–9 show the relationship between the generalised stress 
intensity factors (SIF) and the relative rigidity 𝑘 = 𝐺𝑖 𝐺12⁄  (𝐺𝑖  is 
the shear modulus of inclusion) of the inclusion, under the 
boundary conditions in Eqs (8a) and (8c) at different values of 

inclusion inclination angle 𝜃. The normalising SIF 𝐾0 =
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𝑎√𝜋𝑎 ∙ 𝐸1 × 𝛼11/𝑘11 ∙ ℎ0. Dashed lines show cases when the 
influence of inclusion bending is excluded from its model. As can 
be seen from the plot, this effect is significant, and therefore 
requires careful analysis. 

 

Fig. 2. The relationship between SIF 𝐾11
− /𝐾0 and the generalised  

 stiffness at different values of 𝜃 

 

Fig. 3. The relationship between SIF 𝐾11
+ /𝐾0 and the generalised  

 stiffness at different values of 𝜃 

 

Fig. 4. The relationship between SIF 𝐾12
− /𝐾0 and the generalised  

stiffness at different values of 𝜃 

 

Fig. 5. The relationship between SIF 𝐾12
+ /𝐾0 and the generalised  

 stiffness at different values of 𝜃 
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Fig. 6. The relationship between SIF 𝐾21
+ /𝐾0 and the generalised stiff 

 ness at different values of 𝜃 

 

Fig. 7. The relationship between SIF 𝐾21
− /𝐾0 and the generalised  

 stiffness at different values of 𝜃 

 

Fig. 8. The relationship between SIF 
𝐾22

+

𝐾0
 and the generalised stiffness at 

different values of 𝜃 

 

Fig. 9. The relationship between SIF 𝐾22
− /𝐾0 and the generalised  

 stiffness at different values of 𝜃  
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In Figs 2 and 3, we see that the inclusion bending does not 
affect the values of the SIFs 𝐾11

+ /𝐾0 and 𝐾11
− /𝐾0. It should also 

be noted that the maximum value of the SIFs 𝐾11
− /𝐾0 is reached 

when the inclusion is at the angle 𝜃 = 60° to the boundary of the 
half-space. At lg𝑘 < −4, the values of the SIFs do not change, 
and at lg𝑘 > −4 (except in case of 𝜃 = 75°), they monotonically 
tend to become zero.  

In Figs 4–9, it can be seen that the bending of the inclusion 
significantly affects the values of the SIFs. This is especially 
noticeable in Fig. 4, when 𝜃 = 75° and 𝜃 = 60°. As mentioned 
earlier, this effect requires careful analysis.  

One can see in Figs 8 and 9 that below lg𝑘 = 4, the values of 
the SIFs grow slowly and above lg𝑘 > 4, their growth is intense. 
When the influence of inclusion bending is excluded from 
consideration, we can see that the SIFs 𝐾22

+ /𝐾0 and 𝐾22
− /𝐾0 

increase monotonously even at lg𝑘 = 0 and tend their maximum 
values faster. 

5. CONCLUSIONS 

The paper presents a simple and straightforward approach for 
obtaining the Somigliana type integral formulae and correspond-
ing dual boundary integral equations for an anisotropic thermoe-
lastic half-space with mixed boundary conditions on its surface. 

Integral equations in conjunction with the scheme of the modi-
fied BEM allow solving a number of new problems for the thermo-
elastic half-plane containing cracks or thin deformable inclusions. 

A numerical analysis of the influence of boundary conditions 
on the half-space boundary and the relative rigidity of the thin 
inhomogeneity on stress intensity at the inclusions is provided. 
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