PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tracking control for a cascade perturbed control system using the active disturbance rejection paradigm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper the stability of a closed-loop cascade control system in the trajectory tracking task is addressed. The considered plant consists of underlying second-order fully actuated perturbed dynamics and the first order system which describes dynamics of the input. The main theoretical result establishes the conditions for Lyapunov stability formulated for the perturbed cascade control structure taking advantage of the active rejection disturbance approach. In particular, limitations imposed on a feasible set of an observer bandwidth are discussed. In order to illustrate characteristics of the closed-loop control system simulation results are presented. Furthermore, the particular implementation of the cascade control algorithm is verified experimentally using a two-axis telescope mount. The obtained results confirm that the considered control strategy can be efficiently applied for a class of mechanical systems when a high position tracking precision is required.
Rocznik
Strony
378--408
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wzory
Twórcy
  • Poznań University of Technology, Institute of Automation and Robotics, ul. Piotrowo 3a, 60-965 Poznań, Poland
  • Poznań University of Technology, Institute of Automation and Robotics, ul. Piotrowo 3a, 60-965 Poznań, Poland
Bibliografia
  • [1] C. Aguilar-Ibanez, H. Sira-Ramirez, and J.A. Acosta: Stability of active disturbance rejection control for uncertain systems: A Lyapunov perspective. International Journal of Robust and Nonlinear Control, 27(18), (2017), 4541–4553.
  • [2] G. Bartolini, A. Ferrara, and E. Usai: Chattering avoidance by second-order sliding mode control. IEEE Transactions on Automatic Control, 43(2), (1998), 241–246.
  • [3] G. Bartolini, L. Fridman, A. Pisano, and E. Usai, editors: Modern sliding mode control theory. New perspectives and applications, volume 37 of LNCIS. Springer-Verlag, 2008.
  • [4] A. Bartoszewicz: Time-varying sliding modes for second-order systems. IEE Proc. on Control Theory and Applications, 143 (1996), 455–462.
  • [5] I. Castillo, L. Fridman, and J. A. Moreno: Super-twisting algorithm in presence of time and state dependent perturbations. International Journal of Control, 91(11), (2018), 2535–2548.
  • [6] Z. Chen, Q. Zheng, and Z. Gao: Active disturbance rejection control of chemical processes. In 2007 IEEE International Conference on Control Applications, pages 855–861, Oct 2007.
  • [7] M. Fliess and C. Join: Model-free control and intelligent PID controllers: Towards a possible trivialization of nonlinear control? 15th IFAC Symposium on System Identification, IFAC Proceedings Volumes, 42(10), (2009), 1531–1550.
  • [8] M. Fliess and C. Join: Model-free control. International Journal of Control, 86(12), (2013), 2228–2252.
  • [9] M. Galicki: Finite-time control of robotic manipulators. Automatica, 51 (2015), 49–54.
  • [10] M. Galicki: Finite-time trajectory tracking control in a task space of robotic manipulators. Automatica, 67 (2016), 165–170.
  • [11] Z. Gao: From linear to nonlinear control means: A practical progression. ISA Transactions, 41(2), (2002), 177–189.
  • [12] Z. Gao: Active disturbance rejection control: a paradigm shift in feedback control system design. In 2006 American Control Conference, pages 2399–2405, June 2006.
  • [13] J. Han: Auto-disturbance rejection control and its applications. Control and Decision, 13(1), (1998) (in Chinese).
  • [14] J. Han: From PID to Active Disturbance Rejection Control. IEEE Transactions on Industrial Electronics, 56(3), (2009), 900–906.
  • [15] H. K. Khalil and L. Praly: High-gain observers in nonlinear feedback control. International Journal of Robust and Nonlinear Control, 24(6), (2014), 993–1015.
  • [16] K. Kozłowski, D. Pazderski, B. Krysiak, T. Jedwabny, J. Piasek, S. Kozłowski, S. Brock, D. Janiszewski, and K. Nowopolski: High precision automated astronomical mount. In R. Szewczyk, C. Zieliński, and M. Kaliczyńska, editors, Automation 2019. Advances in Intelligent Systems and Computing, volume 920. Springer, 2020.
  • [17] A. Levant: Sliding order and sliding accuracy in sliding mode control. International Journal of Control, 58(6), (1993), 1247–1263.
  • [18] A. Levant: Robust exact differentiation via sliding mode technique. Automatica, 34(3), (1998), 379–384.
  • [19] R. Madoński and P. Herman: Survey on methods of increasing the efficiency of extended state disturbance observers. ISA Transactions, 56 (2015), 18–27.
  • [20] R. Miklosovic and Z. Gao: A dynamic decoupling method for controlling high performance turbofan engines. 16th IFAC World Congress, IFAC Proceedings Volumes, 38(1), (2005), 532–537.
  • [21] A. Nowacka-Leverton, M. Michałek, D. Pazderski, and A. Bartoszewicz: Experimental verification of smc with moving switching lines applied to hoisting crane vertical motion control. ISA transactions, 51 (2012), 682–693.
  • [22] P. Nowak, K Stebel, T. Kłopot, J. Czeczot, M. Frątczak, and P. Laszczyk: Flexible function block for industrial applications of active disturbance rejection controller. Archives of Control Sciences, 28(3), (2018), 379–400.
  • [23] S. Shao and Z. Gao: On the conditions of exponential stability in active disturbance rejection control based on singular perturbation analysis. International Journal of Control, 90(10), (2017), 2085–2097.
  • [24] B. Sun and Z. Gao: A dsp-based active disturbance rejection control design for a 1-kw h-bridge dc-dc power converter. IEEE Transactions on Industrial Electronics, 52(5), (2005), 1271–1277.
  • [25] V. Utkin: Variable structure systems with sliding modes. IEEE Trans. on Automatic Control, 22 (1977), 212–222.
  • [26] D. Wu, K. Chen, and X. Wang: Tracking control and active disturbance rejection with application to noncircular machining. International Journal of Machine Tools and Manufacture, 47(15), (2007), 2207–2217.
Uwagi
EN
1. This work was supported by the National Science Centre (NCN) under the grant No. 2014/15/B/ST7/00429, contract No. UMO-2014/15/B/ST7/00429.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-14211dee-d6ae-43f1-8a7f-110b5465b774
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.