PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of One and Two Horizontal Plates to Reduce the Drag Force on the Rigid Cylinder Located Inside the Channel: Approach of the Immersed Interface Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Immersed interface method is a non-matching boundary approach that has been taken into consideration in recent years. In this method, there is no need to coincide between the fluid and the solid grids. Eulerian grid is used for fluid domain and Lagrangian grid is used for solid domain. Using the Dirac Delta function, the connection between these two grids is established. Separation of the flow from the cylinder surface causes a high pressure drop in some parts of the cylinder, resulting in a dramatic increase in drag force. Drag force reduction is very important in some engineering issues, and several methods have been proposed to achieve this goal. In this study, the flow around a rigid cylinder is simulated. The goal is to reduce the drag force on the cylinder through one and two horizontal plates. The results are in good agreement with prior numerical results.
Twórcy
  • Department of Mechanical Engineering, Urmia University of Technology, Urmia, Iran
  • Department of Mechanical Engineering, College of Engineering, University of Zakho, Zakho City, Iraq
  • Department of Mechanical Engineering, Urmia University, Urmia, Iran
  • Department of Mechanical Engineering, College of Engineering, University of Zakho, Zakho City, Iraq
Bibliografia
  • 1. Tatsutani, K., Devarakonda, R. and Humphrey, J.A.C. Unsteady flow and heat transfer for cylinder pairs in a channel. International Journal of Heat and Mass Transfer, 36(13), 1993, 3311–3328.
  • 2. Sohankar, A., C. Norbergb, and L. Davidson. Numerical simulation of unsteady low-Reynolds number flow around rectangular cylinders at incidence. Journal of Wind Engineering and Industrial Aerodynamics, 69, 1997, 189–201.
  • 3. Sohankar A. A Numerical Investigation of the Unsteady Wake Flow of Circular Cylinders, 10th Annual International Mechanical Engineering Conference, Tehran, Iran.
  • 4. Patnaik B.S., Narayana P.A. and Seetharamu K.N. Finite element simulation of transient laminar flow past a circular cylinder and two cylinders in tandem-Influence of buoyancy. International Journal of Numerical Methods for Heat & Fluid Flow, 10(6), 2000, 560–80.
  • 5. Bosco, A., Bruno, L., Coste, N. and Fransos, D. 3D flow around a rectangular cylinder: a computational study. In Proc. BBAA VI Intl. Colloquium on: Bluff Bodies Aerodynamics & Applications, Milano, Italy, 32, 2008.
  • 6. Lee, S. and Bogusz B. Finite element implementation of large eddy simulation for separated flows. Journal of Wind Engineering and Industrial Aerodynamics, 77, 1998, 603–617.
  • 7. Xu S. and Wang Z.J. A 3D immersed interface method for fluid–solid interaction, Computer Methods in Applied Mechanics and Engineering. 197, 2008, 2068–2086.
  • 8. Calhoun D. A Cartesian grid method for solving the two-dimensional stream function-vorticity equations in irregular regions. Journal of computational physics. 176, 2002, 231–275.
  • 9. Ye T., Mittal R., Udaykumar H.S. and Shyy W. An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundary, Journal of computational physics. 156, 1999, 209–240.
  • 10. Udaykumar H.S., Mittal R., Rampunggoon P. and Khanna A. A sharp interface Cartesian grid method for simulating flows with complex moving boundaries, Journal of computational physics. 174, 2001, 345–380.
  • 11. Ghafouri A., Esmaily R. and Alizadeh, A. Numerical Simulation of Tank-Treading and Tumbling Motion of Red Blood Cell in the Poiseuille Flow in a Microchannel With and Without Obstacle, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering. 32, 2018, 1–12.
  • 12. Falavand J., Alizadeh A. and Ghafouri A. Modelling of the Dynamics of an immersed body in a microchannel with stenosis using the immersed boundary method. Journal of Computational Applied Mechanics. 43, 2018, 43–52.
  • 13. Abid Mattie, A.; Alizadeh,A.2019. Using a non-conforming meshes method to simulate an interaction between incompressible flow and rigid and elastic boundaries, Mechanika: 25(4) 1–10.
  • 14. Alizadeh,A , Abid Mattie, A.;.2019 Two – dimensional simulation to investigate the interaction of fluid – Structure inside a microchannel with a elastic boundary, International Journal of Mechanical and Production
  • 15. Engineering Research and Development: 9(4) 1151–1156.
  • 16. .Rathakrishnan E. Effect of splitter plate on bluff body drag. AIAA Journal. 37(9), 1999, 1125–1126.
  • 17. Unal M.F. and Rockwell D. On vortex formation from a cylinder. Part 2. Control by splitter-plate interference. Journal of Fluid Mechanics. 190, 1988, 513–529.
  • 18. Apelt C.J., West G.S. and Szewczyk A. The effect of wake splitter plates on the flow past a circular cylinder in the range 104
  • 19. Kwon K. and Choi H. Control of laminar vortex shedding behind a circular cylinder using splitter plates. Physics of Fluids. 8(2), 1996, 479–486,.
  • 20. Hwang J.Y. and Yang K.S. Drag reduction on a circular cylinder using dual detached splitter plates. Journal of Wind Engineering and Industrial Aerodynamics. 95, 2007, 551–564.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-141ee61a-6bc6-4828-ac2d-6064a42b9d32
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.