PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Low-Fidelity Static Aeroelastic Analysis for Jig Shape Optimization of a Solar-Powered Hale Aircraft Wing

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates the static aeroelastic behavior of a lightweight, high-aspect-ratio wing designed for a solar-powered High Altitude Long Endurance (HALE) aircraft. The primary objective is to demonstrate that simplified, low-fidelity models can be effectively used to define the wing’s jig shape and stiffness distribution, ensuring optimal aerodynamic performance during cruise flight. High-aspect-ratio wings (HARWs) are susceptible to significant deformations under aerodynamic loading, which can alter the lift distribution and compromise performance. Therefore, accurate modeling of aeroelastic effects is essential, particularly in the early stages of the design process. The numerical analysis presented in this work uses a low-order, two-way fluid-structure interaction (FSI) method, combining the Vortex Lattice Method (VLM) and the Euler-Bernoulli beam model. This approach offers a balance between computational efficiency and physical accuracy. Validation was carried out by comparing simulation results with wind tunnel data, confirming the method's ability to predict lift coefficients and structural deformation with satisfactory accuracy. The study also introduces an innovative flat-upper-surface airfoil, optimized for solar panel integration and evaluated for static aeroelastic effects. Results show that, with a known distribution of stiffness and mass, the jig shape can be tailored to achieve the desired in-flight geometry. The proposed method provides a fast, reliable, and practical tool for early-stage wing design and is well-suited for engineering applications.
Słowa kluczowe
Rocznik
Strony
40--56
Opis fizyczny
Bibliogr. 41 poz., fot., rys., tab., wzory
Twórcy
  • Łukasiewicz Research Network - Institute of Aviation, 110/114 Krakowska Ave., 02-256 Warsaw, Poland
Bibliografia
  • [1] G, Cestino E. Design of a High-Altitude Long-Endurance Solar-Powered Unmanned Air Vehicle for Multi-Payload and Operations. Proc Inst Mech Eng G J Aerosp Eng 2007;221:199-216. https://doi.org/10.1243/09544100JAERO119.
  • [2] Mayank H, Katare LJ. Solar-Powered UAV Market Size, Share, Competitive Landscape and Trend Analysis Report, by Application, by Mode of Operation, by Type, by Range: Global Opportunity Analysis and Industry Forecast, 2025-2035. Allied Market Research; 2022. https://www.alliedmarketresearch.com/solar-powered-uav-market-A08543.
  • [3] Boucher RJ. Sunrise, the world’s first solar-powered airplane. J Aircraft 2012;22:840-6. https://doi.org/10.2514/3.45213 .
  • [4] Noll TE, Brown JM, Perez-Davis ME, Ishmael SD, Tiffany GC. Investigation of the Helios Prototype Aircraft Mishap Volume I. 2004.
  • [5] Davey P. Zephyr HALE UAS (High Altitude Long Endurance Unmanned Aerial System). Science & Technology Conference, vol. 8, 2009.
  • [6] Weiss G. Around the World in a Solar Plane. IEEE Spectr 2004;41:12-4. https://doi.org/10.1109/MSPEC.2004.1270538.
  • [7] Cipolla V, Dine A, Viti A, Binante V. MDAO and Aeroelastic Analyses of Small Solar-Powered UAVs with Box-Wing and Tandem-Wing Architectures. Aerospace 2023;10:105. https://doi.org/10.3390/aerospace10020105.
  • [8] Okulski M, Ławryńczuk M. A Small UAV Optimized for Efficient Long-Range and VTOL Missions: An Experimental Tandem-Wing Quadplane Drone. Appl Sci 2022;12. https://doi.org/10.3390/app12147059.
  • [9] Rasmussen CC, Canfield RA, Blair M. Optimization process for configuration of flexible joined-wing. Collection of Technical Papers - 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, vol. 1, American Institute of Aeronautics and Astronautics Inc.; 2004, p. 358-66. https://doi.org/10.2514/6.2004-4330.
  • [10] Rasmussen CC, Canfield RA, Blair M. Joined-Wing Sensor-Craft Configuration Design. J Aircr 2006;43:1470-8. https://doi.org/10.2514/1.21951.
  • [11] Nick Galante/PMRF. The Helios Prototype flying wing is shown over the Pacific Ocean during its first test flight on solar power from the U.S. Navy’s Pacific Missile Range Facility in Hawaii. Http://WwwDfrcNasaGov/Gallery/Photo/IndexHtml2001.
  • [12] Yanko T, Dmytrenko O. Prospects for the Implementation of New Materials and Technologies in the Aerospace Industry. Transactions on Aerospace Research 2021;2021:1-10. https://doi.org/10.2478/tar-2021-0019.
  • [13] Hasan YJ, Roeser MS, Hepperle M, Niemann S, Voß A, Handojo V, et al. Flight mechanical analysis of a solar-powered high-altitude platform. CEAS Aeronaut J 2022. https://doi.org/10.1007/s13272-022-00621-2.
  • [14] Kafkas A, Lampeas G. Static aeroelasticity using high fidelity aerodynamics in a staggered coupled and ROM scheme. Aerospace 2020;7:1-23. https://doi.org/10.3390/aerospace7110164.
  • [15] Grozdanov A. Transonic Static Aeroelasticity Using the 2.5D Nonlinear Vortex Lattice Method. https://publications.polymtl.ca/2899/. Mémoire de maîtrise, École Polytechnique de Montréal; 2017.
  • [16] Mao S, Xie C, Yang L, Yang C. Static Aeroelastic Characteristics of Morphing Trailing-Edge Wing Using Geometrically Exact Vortex Lattice Method. International Journal of Aerospace Engineering 2019; 2019. https://doi.org/10.1155/2019/5847627.
  • [17] Yang L, Xie C, Yang C. Geometrically exact vortex lattice and panel methods in static aeroelasticity of very flexible wing. Proc Inst Mech Eng G J Aerosp Eng 2020;234:742-59. https://doi.org/10.1177/0954410019885238.
  • [18] Bordogna MT, Lancelot P, Bettebghor D, De Breuker R. Static and dynamic aeroelastic tailoring with composite blending and manoeuvre load alleviation. Structural and Multidisciplinary Optimization 2020;61:2193-216. https://doi.org/10.1007/S00158-019-02446-W/TABLES/5.
  • [19] Demirer HG. Static and dynamic aeroelastic analysis of a very light Aircraft. https://open.metu.edu.tr/handle/11511/93190. Middle East Technical University; 2021.
  • [20] Kidane BS, Troiani E. Static aeroelastic beam model development for folding winglet design. Aerospace 2020;7:1-16. https://doi.org/10.3390/AEROSPACE7080106.
  • [21] Kilimtzidis S, Kostopoulos V. Static Aeroelastic Optimization of High-Aspect-Ratio Composite Aircraft Wings via Surrogate Modeling. Aerospace 2023;10:251. https://doi.org/10.3390/aerospace10030251.
  • [22] Delavenne M, Barriety B, Vetrano F, Ferrand V, Salaun M. A Static Aeroelastic Analysis of an Active Winglet Concept for Aircraft Performances Improvement. Lecture Notes in Mechanical Engineering 2021:77-82. https://doi.org/10.1007/978-981-33-4960-5_12/COVER.
  • [23] Lyrio JAA, Azevedo JLF, Rade DA, da Silva RG. Computational static aeroelastic analyses in transonic flows. AIAA Aviation Forum 2020; 1 Part F. https://doi.org/10.2514/6.2020-2718.
  • [24] Vindigni CR, Mantegna G, Esposito A, Orlando C, Alaimo A. An aeroelastic beam finite element for time domain preliminary aeroelastic analysis. Mechanics of Advanced Materials and Structures 2023;30:1064-72. https://doi.org/10.1080/15376494.2022.2124333.
  • [25] Yang L, Xie C, Liang D, An C. Geometrically Nonlinear Static Aeroelastic Analysis Based on CFD/CSD Interaction Accelerated by Panel Method, 2023, p. 324-36. https://doi.org/10.1007/978-981-19-7652-0_31.
  • [26] Galiński C. Preliminary Study of an Airplane for Electric Propulsion Testing at High Altitudes. Journal of KONES 2018;25:167-74. https://doi.org/10.5604/01.3001.0012.4328.
  • [27] Galiński C, Gronowska M, Stalewski W, Gumowski K. Flat-upper-surface wing for experimental high altitude unmanned aerial vehicle. Proc Inst Mech Eng G J Aerosp Eng 2021;235:81-94. https://doi.org/10.1177/0954410020925642.
  • [28] Bugała P, Sznajder J, Sieradzki A. Numerical Modelling of Static Aeroelastic Deformations of Slender Wing in Aerodynamic Design. Transactions on Aerospace Research 2023;2023:52-70. https://doi.org/10.2478/tar-2023-0023.
  • [29] Ritter M, Hilger J. Dynamic Aeroelastic Simulations of the Pazy Wing by UVLM with Nonlinear Viscous Corrections. AIAA SCITECH 2022 Forum, American Institute of Aeronautics and Astronautics; 2021. https://doi.org/10.2514/6.2022-0177.
  • [30] Li X, Wan Z, Wang X, Yang C. Aeroelastic Optimization Design of the Global Stiffness for a Joined Wing Aircraft. Applied Sciences 2021;11. https://doi.org/10.3390/app112411800.
  • [31] Banerjee JR. A FORTRAN routine for computation of coupled bending-torsional dynamic stiffness matrix of beam elements. Advances in Engineering Software and Workstations 1991;13:17-24. https://doi.org/10.1016/0961-3552(91)90041-2.
  • [32] Dillinger JKS, Abdalla MM, Meddaikar YM, Klimmek T. Static aeroelastic stiffness optimization of a forward swept composite wing with CFD-corrected aero loads. CEAS Aeronaut J 2019;10:1015-32. https://doi.org/10.1007/s13272-019-00397-y.
  • [33] Crovato A, Almeida HS, Vio G, Silva GH, Prado AP, Breviglieri C, et al. Effect of Levels of Fidelity on Steady Aerodynamic and Static Aeroelastic Computations. Aerospace 2020;7:42. https://doi.org/10.3390/aerospace7040042.
  • [34] Andersen L, Nielsen SRK. Elastic Beams in Three Dimensions - DCE Lecture Notes No. 23. vol. 1. Department of Civil Engineering, Aalborg University; 2008.
  • [35] Bauchau OA, Craig JI. Structural Analysis With Applications to Aerospace Structures. vol. 163. New York: Springer; 2009.
  • [36] Megson THG. Aircraft Structures for Engineering Students. Elsevier; 2021. https://doi.org/10.1016/B978-0-12-822868-5.09989-7.
  • [37] Roark RJ, Young WC, Budynas RG, Sadegh AM. Roark’s formulas for stress and strain. McGraw-Hill Education; 2012.
  • [38] FAI Sporting Code, Common Section 7-1 st FAI Sporting Code Section 7-Class O Common Hang Gliders and Paragliders Classes 1 to 5 2018 Edition Effective 1st. 2018.
  • [39] Findahl P. My F1A Developments, Free Flight Quarterly, pp. 27-31, January 2008. n.d.
  • [40] Galiński C, Gronowska M, Stalewski W, Gumowski K. Flat-upper-surface wing for experimental high altitude unmanned aerial vehicle. Proc Inst Mech Eng G J Aerosp Eng 2021;235:81-94. https://doi.org/10.1177/0954410020925642.
  • [41] Limpinsel M, Kuo D, Vijh A. SMARTS Modeling of Solar Spectra at Stratospheric Altitude and Influence on Performance of Selected III-V Solar Cells. 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), IEEE; 2018, p. 3367-73. https://doi.org/10.1109/PVSC.2018.8547665.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1417135b-529d-4cd9-8f2d-2cdbc1b5cf66
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.