PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mantle dynamics beneath Greece from SKS and PKS seismic anisotropy study

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
SKS and PKS splitting parameters were determined in the broader Greek region using data from 45 stations of the Hellenic Unified Seismological Network and the Kandilli Observatory and Earthquake Research Institute, utilizing teleseismic events that occurred between 2010 and 2017. Data were processed for shear-wave splitting with the Minimum Energy Method that was considered the optimal. The results generally confirm the existence of anisotropic zonation in the Hellenic subduction system, with alternating trench-normal and trench-parallel directions. The zonation is attributed to the upper and lower olivine fabric layers that can, potentially, be present in the subduction zone. At the edges of this zone, two possible toroidal flow cases have been identified, implying the existence of tears that allow the inflow of asthenospheric material in the mantle wedge. The high number of null measurements in the KZN and XOR stations indicates a possible anisotropic transition zone between the fore-arc and back-arc areas. SKS and PKS splitting results are jointly interpreted, given that they yield similar values in most cases.
Czasopismo
Rocznik
Strony
1341--1357
Opis fizyczny
Bibliogr. 100 poz.
Twórcy
autor
  • Section of Geophysics and Geothermics, Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 157 84 Athens, Greece
  • Section of Geophysics and Geothermics, Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 157 84 Athens, Greece
autor
  • Section of Geophysics and Geothermics, Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 157 84 Athens, Greece
autor
  • Section of Geophysics and Geothermics, Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 157 84 Athens, Greece
  • Section of Geophysics and Geothermics, Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 157 84 Athens, Greece
autor
  • Geodynamic Institute, National Observatory of Athens, Lofos Nymfon, Thission, 11810 Athens, Greece
Bibliografia
  • 1. Abers GA, Van Keken PE, Hacker BR (2017) The cold and relatively dry nature of mantle forearcs in subduction zones. Nat Geosci 10:333–337
  • 2. Abt DL, Fischer KM, Abers GA, Protti M, González V, Strauch W (2010) Constraints on upper mantle anisotropy surrounding the Cocos slab from SK(K)S splitting. J Geophys Res Solid Earth 115:1–16. https://doi.org/10.1029/2009JB006710
  • 3. Baccheschi P, Margheriti L, Steckler MS, Boschi E (2011) Anisotropy patterns in the subducting lithosphere and in the mantle wedge: a case study—The southern Italy subduction system. J Geophys Res Solid Earth 116:1–15. https://doi.org/10.1029/2010JB007961
  • 4. Barruol G, Mainprice D (1993) A quantitative evaluation of the contribution of crustal rocks to the shear-wave splitting of teleseismic SKS waves. Phys Earth Planet Inter 78:281–300. https://doi.org/10.1016/0031-9201(93)90161-2
  • 5. Barruol G, Silver PG, Vauchez A (1997) Seismic anisotropy in the eastern United States: Deep structure of a complex continental plate. J Geophys Res Earth 102:8329–8348. https://doi.org/10.1029/96jb03800
  • 6. Bean CJ, Jacob AWD (1990) P-wave anisotropy in the lower lithosphere. Earth Planet Sci Lett 99(1–2):58–65. https://doi.org/10.1016/0012-821X(90)90070-E
  • 7. Behn MD, Conrad CP, Silver PG (2004) Detection of upper mantle flow associated with the African Superplume. Earth Planet Sci Lett 224:259–274. https://doi.org/10.1016/j.epsl.2004.05.026
  • 8. Berens P (2009) Circular statistics matlab toolbox. J Stat Softw 31:1–21
  • 9. Berk Biryol C, Beck SL, Zandt G, Özacar AA (2011) Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography. Geophys J Int 184:1037–1057. https://doi.org/10.1111/j.1365-246X.2010.04910.x
  • 10. Beyreuther M, Barsch R, Krischer L, Megies T, Behr Y, Wassermann J (2010) ObsPy: a python toolbox for seismology. Seismol Res Lett 81:530–533. https://doi.org/10.1785/gssrl.81.3.530
  • 11. Bocchini GM, Brüstle A, Becker D, Meier T, van Keken PE, Ruscic M, Papadopoulos GA, Rische M, Friederich W (2018) Tearing, segmentation, and backstepping of subduction in the Aegean: new insights from seismicity. Tectonophysics 734–735:96–118. https://doi.org/10.1016/j.tecto.2018.04.002
  • 12. Bowman JR, Ando MA (1987) Shear-wave splitting in the upper mantle wedge above the Tonga subduction zone. Geophys J R A S 88:24–41
  • 13. Chousianitis K, Ganas A, Gianniou M (2013) Kinematic interpretation of present-day crustal deformation in central Greece from continuous GPS measurements. J Geodyn 71:1–13. https://doi.org/10.1016/j.jog.2013.06.004
  • 14. Christensen NI, Salisbury MH (1979) Seismic anisotropy in the oceanic upper mantle: evidence from the Bay of Islands Ophiolite Complex. J Geophys Res Sol Earth 84(B9):4601–4610. https://doi.org/10.1029/JB084iB09p04601
  • 15. Confal JM, Eken T, Tilmann F, Yolsal-Çevikbilen S, Çubuk-Sabuncu Y, Saygin E, Taymaz T (2016) Investigation of mantle kinematics beneath the Hellenic-subduction zone with teleseismic direct shear waves. Phys Earth Planet Inter 261:141–151. https://doi.org/10.1016/j.pepi.2016.10.012
  • 16. Currie CA, Cassidy JF, Hyndman RD, Bostock MG (2004) Shear wave anisotropy beneath the Cascadia subduction zone and western North American craton. Geophys J Int 157:341–353. https://doi.org/10.1111/j.1365-246X.2004.02175.x
  • 17. Endrun B, Lebedev S, Meier T, Tirel C, Friederich W (2011) Complex layered deformation within the Aegean crust and mantle revealed by seismic anisotropy. Nat Geosci 4:203–207. https://doi.org/10.1038/ngeo1065
  • 18. Evangelidis CP (2017) Seismic anisotropy in the Hellenic subduction zone: effects of slab segmentation and subslab mantle flow. Earth Planet Sci Lett 480:97–106. https://doi.org/10.1016/j.epsl.2017.10.003
  • 19. Evangelidis CP, Liang WT, Melis NS, Konstantinou KI (2011) Shear wave anisotropy beneath the Aegean inferred from SKS splitting observations. J Geophys Res Solid Earth 116:1–14. https://doi.org/10.1029/2010JB007884
  • 20. Faccenda M, Capitanio FA (2013) Seismic anisotropy around subduction zones: insights from three-dimensional modeling of upper mantle deformation and SKS splitting calculations. Geochem Geophys Geosyst 14:243–262. https://doi.org/10.1002/ggge.20055
  • 21. Floyd MA, Billiris H, Paradissis D, Veis G, Avallone A, Briole P, McClusky S, Nocquet JM, Palamartchouk K, Parsons B, England PC (2010) A new velocity field for Greece: implications for the kinematics and dynamics of the Aegean. J Geophys Res Solid Earth 115:1–25. https://doi.org/10.1029/2009JB007040
  • 22. Ganas A, Oikonomou IA, Tsimi C (2013) NOAfaults: a digital database for active faults in Greece. Bull Geol Soc Greece 47:518. https://doi.org/10.12681/bgsg.11079
  • 23. Ganas A, Elias P, Bozionelos G, Papathanassiou G, Avallone A, Papastergios A, Valkaniotis S, Parcharidis I, Briole P (2016) Coseismic deformation, field observations and seismic fault of the 17 November 2015 M = 6.5, Lefkada Island, Greece earthquake. Tectonophysics 687:210–222
  • 24. Govers R, Wortel MJR (2005) Lithosphere tearing at STEP faults: response to edges of subduction zones. Earth Planet Sci Lett 236:505–523. https://doi.org/10.1016/j.epsl.2005.03.022
  • 25. Graw JH, Hansen SE (2017) Upper mantle seismic anisotropy beneath the Northern Transantarctic Mountains, Antarctica from PKS, SKS, and SKKS splitting analysis. Geochem Geophys Geosyst 18:544–557. https://doi.org/10.1002/2016GC006729
  • 26. Guillaume B, Husson L, Funiciello F, Faccenna C (2013) The dynamics of laterally variable subductions: Laboratory models applied to the Hellenides. Solid Earth 4:179–200. https://doi.org/10.5194/se-4-179-2013
  • 27. Halpaap F, Rondenay S, Ottemöller L (2018) Seismicity, deformation, and metamorphism in the Western Hellenic subduction zone: new constraints from tomography. J Geophys Res Solid Earth 123:3000–3026. https://doi.org/10.1002/2017JB015154
  • 28. Hatzfeld D, Karagianni E, Kassaras I, Kiratzi A, Louvari E, Lyon-Caen H, Makropoulos K, Papadimitriou P, Bock G, Priestley K (2001) Shear wave anisotropy in the upper mantle beneath the Aegean related to internal deformation. J Geophys Res 106:30737–30753. https://doi.org/10.1029/2001JB000387
  • 29. Jolivet L (2001) A comparison of geodetic and finite strain pattern in the Aegean, geodynamic implications. Earth Planet Sci Lett 187:95–104. https://doi.org/10.1016/S0012-821X(01)00277-1
  • 30. Jolivet L, Faccenna C, Huet B, Labrousse L, Le Pourhiet L, Lacombe O, Lecomte E, Burov E, Denèle Y, Brun JP, Philippon M, Paul A, Salaün G, Karabulut H, Piromallo C, Monié P, Gueydan F, Okay AI, Oberhänsli R, Pourteau A, Augier R, Gadenne L, Driussi O (2013) Aegean tectonics: Strain localisation, slab tearing and trench retreat. Tectonophysics 597–598:1–33. https://doi.org/10.1016/j.tecto.2012.06.011
  • 31. Jung H (2011) Seismic anisotropy produced by serpentine in mantle wedge. Earth Planet Sci Lett 307:535–543. https://doi.org/10.1016/j.epsl.2011.05.041
  • 32. Jung H, Karato SI (2001) Water-induced fabric transitions in olivine. Science 293:1460–1463. https://doi.org/10.1126/science.1062235
  • 33. Kahle HG, Straub C, Reilinger R, McClusky S, King R, Hurst K, Veis G, Kastens K, Cross P (1998) The strain rate field in the eastern Mediterranean region, estimated by repeated GPS measurements. Tectonophysics 294:237–252. https://doi.org/10.1016/S0040-1951(98)00102-4
  • 34. Kapetanidis V, Deschamps A, Papadimitriou P, Matrullo E, Karakonstantis A, Bozionelos G, Kaviris G, Serpetsidaki A, Lyon-caen H, Voulgaris N, Bernard P, Sokos E, Makropoulos K (2015) The 2013 earthquake swarm in Helike, Greece: seismic activity at the root of old normal faults. Geophys J Int 202:2044–2073. https://doi.org/10.1093/gji/ggv249
  • 35. Karagianni EE, Papazachos CB, Panagiotopoulos DG, Suhadolc P, Vuan A, Panza GF (2005) Shear velocity structure in the Aegean area obtained by inversion of Rayleigh waves. Geophys J Int 160:127–143. https://doi.org/10.1111/j.1365-246X.2005.02354.x
  • 36. Karakostas V, Papadimitriou E, Karakaisis G, Papazachos C, Scordilis E, Vargemezis G, Aidona E (2003) The 2001 Skyros, northern Aegean, Greece, earthquake sequence: off-fault aftershocks, tectonic implications, and seismicity triggering. Geophys Res Lett 30:1012. https://doi.org/10.1029/2002/GL015814
  • 37. Karakostas V, Papadimitriou E, Gospodinov D (2014) Modelling the 2013 North Aegean (Greece) seismic sequence: geometrical and frictional constraints, and aftershock probabilities. Geophys J Int 197:525–541. https://doi.org/10.1093/gji/ggt523
  • 38. Karato SI (2008) Deformation of earth materials: introduction to the rheology of solid earth. Cambridge University Press, Cambridge
  • 39. Karato SI, Jung H, Katayama I, Skemer P (2008) Geodynamic significance of seismic anisotropy of the upper mantle: new insights from laboratory studies. Ann Rev Earth Planet Sci. 36:59–95. https://doi.org/10.1146/annurev.earth.36.031207.124120
  • 40. Kassaras I, Kapetanidis V (2018) Resolving the tectonic stress by the inversion of earthquake focal mechanisms. Application in the region of Greece. In: Sebastiano DM (ed) Moment tensor solutions: a useful tool for seismotectonics, 1st edn. Springer, Berlin, pp 405–452
  • 41. Kassaras I, Kalantoni D, Benetatos Ch, Kaviris G, Michalaki K, Sakellariou N, Makropoulos K (2015) Seismic damage scenarios in Lefkas old town (W. Greece). Bull Earth Eng 13(12):3669–3711
  • 42. Kaviris G, Papadimitriou P, Kravvariti Ph, Kapetanidis V, Karakonstantis A, Voulgaris N, Makropoulos K (2015) A detailed seismic anisotropy study during the 2011–2012 unrest period in the Santorini Volcanic Complex. Phys Earth Planet Int 238:51–88. https://dx.org/10.1016/j.pepi.2014.11.002
  • 43. Kaviris G, Spingos I, Kapetanidis V, Papadimitriou P, Voulgaris N, Makropoulos K (2017) Upper crust seismic anisotropy study and temporal variations of shear-wave splitting parameters in the western Gulf of Corinth (Greece) during 2013. Phys Earth Planet Int 269:148–164. https://doi.org/10.1016/j.pepi.2017.06.006
  • 44. Kaviris G, Millas C, Spingos I, Kapetanidis V, Fountoulakis I, Papadimitriou P, Voulgaris N, Makropoulos K (2018a) Observations of shear-wave splitting parameters in the Western Gulf of Corinth focusing on the 2014 Mw = 5.0 earthquake. Phys Earth Planet Inter 282:60–76. https://doi.org/10.1016/j.pepi.2018.07.005
  • 45. Kaviris G, Spingos I, Millas C, Kapetanidis V, Fountoulakis I, Papadimitriou P, Voulgaris N, Drakatos G (2018b) Effects of the January 2018 seismic sequence on shear-wave splitting in the upper crust of Marathon (NE Attica, Greece). Phys Earth Planet Inter 285:45–58. https://doi.org/10.1016/j.pepi.2018.10.007
  • 46. Kawasaki I, Kon’no F (1984) Azimuthal anisotropy of surface waves and the possible type of the seismic anisotropy due to preferred orientation of olivine in the uppermost mantle beneath the Pacific Ocean. J Phys Earth 32:229–244. https://doi.org/10.4294/jpe1952.32.229
  • 47. Kennett BLN, Engdahl ER (1991) Traveltimes for global earthquake location and phase identification. Geophys J Int 105:429–465. https://doi.org/10.1111/j.1365-246X.1991.tb06724.x
  • 48. Kennett BLN, Engdahl ER, Buland R (1995) Constraints on seismic velocities in the Earth from traveltimes. Geophys J Int 122:104–108. https://doi.org/10.1111/j.1365-246X.1995.tb03540.x
  • 49. Kiratzi A, Louvari E (2003) Focal mechanisms of shallow earthquakes in the Aegean Sea and the surrounding lands determined by waveform modelling: a new database. J Geodyn 36:251–274. https://doi.org/10.1016/S0264-3707(03)00050-4
  • 50. Kneller EA, Van Keken PE (2008) Effect of three-dimensional slab geometry on deformation in the mantle wedge: implications for shear wave anisotropy. Geochem Geophys Geosyst 9:1–21. https://doi.org/10.1029/2007GC001677
  • 51. Kouskouna V, Sakkas G (2013) The University of Athens Hellenic Macroseismic Database (HMDB.UoA): historical earthquakes. J Seismol 17:1253–1280. https://doi.org/10.1007/s10950-013-9390-3
  • 52. Kouskouna V, Makropoulos K, Tsiknakis K (1993) Contribution of historical information to a realistic seismicity and hazard assessment of an area. The Ionian Islands earthquakes of 1767 and 1769: historical investigation. In: Stucchi, M (ed) Historical investigation of European earthquakes, materials of the CEC project review of historical seismicity in Europe, 1:195–206
  • 53. Kreemer C, Blewitt G, Klein EC (2014) A geodetic plate motion and Global Strain Rate Model. Geochem Geophys Geosyst 15:3849–3889. https://doi.org/10.1002/2014GC005407
  • 54. Le Pichon X, Kreemer C (2010) The miocene-to-present kinematic evolution of the Eastern Mediterranean and Middle East and its implications for dynamics. Annu Rev Earth Planet Sci 38:323–351. https://doi.org/10.1146/annurev-earth-040809-152419
  • 55. Liu KH, Gao SS (2013) Making reliable shear-wave splitting measurements. Bull Seismol Soc Am 103:2680–2693. https://doi.org/10.1785/0120120355
  • 56. Long MD, Silver PG (2008) The subduction zone flow field from seismic anisotropy: a global view. Science 319:315–318. https://doi.org/10.1126/science.1150809
  • 57. Long MD, Silver PG (2009) Shear wave splitting and mantle anisotropy: measurements, interpretations, and new directions. Surv Geophys 30:407–461
  • 58. Long MD, van der Hilst RD (2006) Shear wave splitting from local events beneath the Ryukyu arc: trench-parallel anisotropy in the mantle wedge. Phys Earth Planet Int 155:300–312. https://doi.org/10.1016/j.pepi.2006.01.003
  • 59. Long MD, Wirth EA (2013) Mantle flow in subduction systems: the mantle wedge flow field and implications for wedge processes. J Geophys Res Solid Earth 118:583–606. https://doi.org/10.1002/jgrb.50063
  • 60. Makropoulos K, Kaviris G, Kouskouna V (2012) An updated and extended earthquake catalogue for Greece and adjacent areas since 1900. Nat Hazards Earth Syst Sci 12:1425–1430. https://doi.org/10.5194/nhess-12-1425-2012
  • 61. McKenzie D (1972) Active tectonics of the Mediterranean Region. Geophys J Int 30:109–185. https://doi.org/10.1111/j.1365-246X.1972.tb02351.x
  • 62. Menant A, Sternai P, Jolivet L, Guillou-Frottier L, Gerya T (2016) 3D numerical modeling of mantle flow, crustal dynamics and magma genesis associated with slab roll-back and tearing: the eastern Mediterranean case. Earth Planet Sci Lett 442:93–107. https://doi.org/10.1016/j.epsl.2016.03.002
  • 63. Montagner JP, Kennett BLN (1996) How to reconcile body-wave and normal-mode reference earth models. Geophys J Int 125:229–248. https://doi.org/10.1111/j.1365-246X.1996.tb06548.x
  • 64. Mutlu AK, Karabulut H (2011) Anisotropic Pn tomography of Turkey and adjacent regions. Geophys J Int 187:1743–1758. https://doi.org/10.1111/j.1365-246X.2011.05235.x
  • 65. Nicolas A, Christensen NI (1987) Formation of anisotropy in uppermantle peridotites: a review, in composition, structure and dynamics of the lithosphere-asthenosphere system. Am Geophys Union Geo Dyn Monogr Ser 16:111–123. https://doi.org/10.1029/GD016
  • 66. Nijholt N, Govers R (2015) The role of passive margins on the evolution of Subduction-Transform Edge Propagators (STEPs). J Geophys Res Solid Earth 120:7203–7230. https://doi.org/10.1002/2015JB012202
  • 67. Nyst M, Thatcher W (2004) New constraints on the active tectonic deformation of the Aegean. J Geophys Res Solid Earth 109:1–23. https://doi.org/10.1029/2003JB002830
  • 68. Olive JA, Pearce F, Rondenay S, Behn MD (2014) Pronounced zonation of seismic anisotropy in the Western Hellenic subduction zone and its geodynamic significance. Earth Planet Sci Lett 391:100–109. https://doi.org/10.1016/j.epsl.2014.01.029
  • 69. Papadimitriou EE (2002) Mode of strong earthquake recurrence in the central Ionian Islands (Greece): possible triggering due to Coulomb stress changes generated by the occurrence of previous strong shocks. Bull Seismol Soc Am 92:3293–3308
  • 70. Papadimitriou EE, Sykes LR (2001) Evolution of the stress field in the Northern Aegean Sea (Greece). Geophys J Int 146:747–759. https://doi.org/10.1046/j.0956-540X.2001.01486.x
  • 71. Papadimitriou P, Kaviris G, Makropoulos K (1999) Evidence of shear-wave splitting in the eastern Corinthian Gulf (Greece). Phys Earth Planet Inter 114:3–13. https://doi.org/10.1016/S0031-9201(99)00041-2
  • 72. Papadimitriou P, Kaviris G, Makropoulos K (2006) The Mw = 6.3 2003 Lefkada Earthquake (Greece) and induced transfer changes. Tectonophysics 423:73–82
  • 73. Papadimitriou P, Kapetanidis V, Karakonstantis A, Kaviris G, Voulgaris N, Makropoulos K (2015) The Santorini Volcanic Complex: a detailed multi-parameter seismological approach with emphasis on the 2011–2012 unrest period. J Geodyn 85:32–57. https://doi.org/10.1016/j.jog.2014.12.004
  • 74. Papadimitriou P, Kassaras I, Kaviris G, Tselentis G-A, Voulgaris N, Lekkas E, Chouliaras G, Evangelidis C, Pavlou K, Kapetanidis V, Karakonstantis A, Kazantzidou-Firtinidou D, Fountoulakis I, Millas C, Spingos I, Aspiotis T, Moumoulidou A, Skourtsos E, Antoniou V, Andreadakis E, Mavroulis S, Kleanthi M (2018) The 12th June 2017 Mw = 6.3 Lesvos earthquake from detailed seismological observations. J Geodyn 115:23–42. https://doi.org/10.1016/j.jog.2018.01.009
  • 75. Papanikolaou DJ, Royden LH (2007) Disruption of the Hellenic arc: late Miocene extensional detachment faults and steep Pliocene-Quaternary normal faults—Or what happened at Corinth? Tectonics. https://doi.org/10.1029/2006TC002007
  • 76. Papazachos B, Papazachou K (2003) Earthquakes in Greece (in Greek). Ziti Publications, Athens
  • 77. Papazachos BC, Dimitriadis ST, Panagiotopoulos DG, Papazachos CB, Papadimitriou EE (2005) Deep structure and active tectonics of the southern Aegean volcanic arc. Dev Volcano 7:47–64. https://doi.org/10.1016/S1871-644X(05)80032-4CrossRefGoogle Scholar
  • 78. Paul A, Karabulut H, Mutlu AK, Salaün G (2014) A comprehensive and densely sampled map of shear-wave azimuthal anisotropy in the Aegean-Anatolia region. Earth Planet Sci Lett 389:14–22. https://doi.org/10.1016/j.epsl.2013.12.019
  • 79. Pearce D, Rondenay S, Sachpazi M, Charalampakis M, Royden LH (2012) Seismic investigation of the transition from continental to oceanic subduction along the western Hellenic subduction Zone. J Geophys Res Solid Earth. https://doi.org/10.1029/2011JB009023
  • 80. Piromallo C, Morelli A (2003) P wave tomography of the mantle under the Alpine-Mediterranean area. J Geophys Res Solid Earth 108:1–23. https://doi.org/10.1029/2002JB001757
  • 81. Portner D, Delph J, Biryol B, Beck S, Zandt G, Özacar A, Sandvol E, Türkelli N (2018) Subduction termination through progressive slab deformation across Eastern Mediterranean subduction zones from updated P-wave tomography beneath Anatolia. Geosphere 14(3):907–925. https://doi.org/10.1130/GES01617.1
  • 82. Raitt RW, Shor GG Jr, Francis TJG, Morris GB (1969) Anisotropy of the Pacific upper mantle. J Geophys Res 74(12):3095–3109. https://doi.org/10.1029/JB074i012p03095
  • 83. Reilinger R, McClusky S, Vernant P, Lawrence S, Ergintav S, Cakmak R, Ozener H, Kadirov F, Guliev I, Stepanyan R, Nadariya M, Hahubia G, Mahmoud S, Sakr K, ArRajehi A, Paradissis D, Al-Aydrus A, Prilepin M, Guseva T, Evren E, Dmitrotsa A, Filikov SV, Gomez F, Al-Ghazzi R, Karam G (2006) GPS constraints on continental deformation in the Africa–Arabia–Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res Solid Earth 111:1–26. https://doi.org/10.1029/2005JB004051
  • 84. Royden LH, Papanikolaou DJ (2011) Slab segmentation and late Cenozoic disruption of the Hellenic arc. Geochem Geophys Geosyst 12:1–24. https://doi.org/10.1029/2010GC003280
  • 85. Russo RM, Silver PG (1994) Trench-parallel flow beneath the Nazca plate from seismic anisotropy. Science 263:1105–1111. https://doi.org/10.1126/science.263.5150.1105
  • 86. Salaün G, Pedersen HA, Paul A, Farra V, Karabulut H, Hatzfeld D, Papazachos C, Childs DM, Pequegnat C, Afacan T, Aktar M, Bourova-Flin E, Cambaz D, Hatzidimitriou P, Hubans F, Kementzetzidou D, Karagianni E, Karagianni I, Komec Mutlu A, Dimitrova L, Ozakin Y, Roussel S, Scordilis M, Vamvakaris D (2012) High-resolution surface wave tomography beneath the Aegean-Anatolia region: constraints on upper-mantle structure. Geophys J Int 190:406–420. https://doi.org/10.1111/j.1365-246X.2012.05483.x
  • 87. Savage MK (1999) Seismic anisotropy and mantle deformation: what have we learnt from shear wave splitting? Rev Geophys 37:65–106. https://doi.org/10.1029/98RG02075
  • 88. Schmid C, van der Lee S, Giardini D (2004) Delay times and shear wave splitting in the Mediterranean region. Geophys J Int 159:275–290. https://doi.org/10.1111/j.1365-246X.2004.02381.x
  • 89. Silver PG, Chan WW (1991) Shear wave splitting and sub continental mantle deformation. J Geophys Res 96:429–454. https://doi.org/10.1029/91JB00899
  • 90. Sokos E, Zahradník J, Gallovič F, Serpetsidaki A, Plicka V, Kiratzi A (2016) Asperity break after 12 years: the Mw6. 4 2015 Lefkada (Greece) earthquake. Geophys Res Lett 43(12):6137–6145. https://doi.org/10.11002/2016GL069427
  • 91. Sternai P, Jolivet L, Menant A, Gerya T (2014) Driving the upper plate surface deformation by slab rollback and mantle flow. Earth Planet Sci Lett 405:110–118. https://doi.org/10.1016/j.epsl.2014.08.023
  • 92. Stucchi M, Rovida A, Gomez Capera AA, Alexandre P, Camelbeeck T, Demircioglu MB, Gasperini P, Kouskouna V, Musson RMW, Radulian M, Sesetyan K, Vilanova S, Baumont D, Bungum H, Fäh D, Lenhardt W, Makropoulos K, Martinez Solares JM, Scotti O, Živčić M, Albini P, Batllo J, Papaioannou C, Tatevossian R, Locati M, Meletti C, Viganò D, Giardini D (2013) The SHARE European Earthquake Catalogue (SHEEC) 1000-1899. J Seismol 17:523–544. https://doi.org/10.1007/s10950-012-9335-2
  • 93. Suckale J, Rondenay S, Sachpazi M, Charalampakis M, Hosa A, Royden LH (2009) High-resolution seismic imaging of the western Hellenic subduction zone using teleseismic scattered waves. Geophys J Int 178:775–791. https://doi.org/10.1111/j.1365-246X.2009.04170.x
  • 94. Tommasi A, Tikoff B, Vauchez A (1999) Upper mantle tectonics: three-dimensional deformation, olivine crystallographic fabrics and seismic properties. Earth Planet Sci Lett 168:173–186. https://doi.org/10.1016/S0012-821X(99)00046-1
  • 95. Vecsey L, Plomerová J, Babuška V (2008) Shear-wave splitting measurements—problems and solutions. Tectonophysics 462:178–196. https://doi.org/10.1016/j.tecto.2008.01.021
  • 96. Visser K, Trampert J, Kennett BLN (2008) Global anisotropic velocity maps for higher mode Love and Rayleigh waves. Geophys J Int 172:1016–1032. https://doi.org/10.1111/j.1365-246X.2007.03685.x
  • 97. Wüstefeld A, Bokelmann G (2007) Null detection in shear-wave splitting measurements. Bull Seismol Soc Am 97:1204–1211. https://doi.org/10.1785/0120060190
  • 98. Wüstefeld A, Bokelmann G, Zaroli C, Barruol G (2008) SplitLab: a shear-wave splitting environment in Matlab. Comput Geosci 34:515–528. https://doi.org/10.1016/j.cageo.2007.08.002
  • 99. Wüstefeld A, Al-Harrasi O, Verdon JP, Wookey J, Kendall JM (2010) A strategy for automated analysis of passive microseismic data to image seismic anisotropy and fracture characteristics. Geophys Prospect 58:755–773. https://doi.org/10.1111/j.1365-2478.2010.00891.x
  • 100. Zhang S, Karato S (1995) Lattice preferred orientation of olivine aggregates deformed in simple shear. Nature 375:774–777. https://doi.org/10.1038/375774a0
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-140e8379-c594-457c-ab48-13a5d9a5f340
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.