Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The reduction in CO2 emissions is now a very popular topic. According to the International Energy Agency, CO2 emitted in 2021 was 6% more than that emitted in 2020. Carbon capture and storage (CCS) is gaining popularity as a possible solution to climate change. Experts estimate that industry and power plants will be responsible for 19% of total CO2 emissions by 2050. This paper presents the design of a semi-industrial-scale system for CO2 capture based on the moving bed temperature swing adsorption technology. According to the results of laboratory tests conducted by the SINTEF industry, this technology demonstrates high capture efficiency (>85%). The CO2 capture medium involved in adsorption is activated carbon passing through individual sections (cooling, heating, adsorption), where CO2 is bonded and then released. The heat and mass transfer processes are realised on the developed stand. The heat exchangers use steam and water as the heating/cooling medium. The paper reviews the existing solutions and describes the developed in-house design of heat exchangers that will ensure heat transfer conditions being a trade-off between economic and efficiency-related issues of the CO2 capture process. The designed test stand will be installed in a Polish power plant and is expected to meet the method energy intensity target, set at ≤ 2.7 MJ/kg CO2, with a capture efficiency exceeding 85%. The aim of the work was to develop and solve technical problems that would lead to the construction of a CO2 capture station with parameters mentioned above. This stand uses an innovative method where CO2 is captured by contacting the fluid (gases) with solid particles. The heat exchange associated with the heating and cooling of the adsorbent had to be solved. For this purpose, heat exchangers were designed with high thermal efficiency and to prevent the formation of mounds.
Czasopismo
Rocznik
Tom
Strony
93--100
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
autor
- Politechnika Krakowska, Al. Jana Pawła II 37, 31-864 Kraków, Poland
autor
- Politechnika Krakowska, Al. Jana Pawła II 37, 31-864 Kraków, Poland
autor
- Politechnika Krakowska, Al. Jana Pawła II 37, 31-864 Kraków, Poland
autor
- Politechnika Krakowska, Al. Jana Pawła II 37, 31-864 Kraków, Poland
autor
- Politechnika Krakowska, Al. Jana Pawła II 37, 31-864 Kraków, Poland
autor
- SINTEF Industry, PO Box 124 Blindern, Oslo N0314, Norway
autor
- SINTEF Industry, PO Box 124 Blindern, Oslo N0314, Norway
autor
- NTNU - Norwegian University of Science and Technology, Department of Energy and Process Engineering, Trondheim, Norway
autor
- NTNU - Norwegian University of Science and Technology, Department of Energy and Process Engineering, Trondheim, Norway
Bibliografia
- 1. Global Energy Review: CO2 Emissions in 2021 Global emissions rebound sharply to highest ever level. 2021.
- 2. Gibbins J, Chalmers H. Carbon capture and storage. Energy Policy. 2008;36(12):4317–22. Available from: http://dx.doi.org/10.1016/j.enpol.2008.09.058
- 3. De Coninck H, Stephens JC, Metz B. Global learning on carbon capture and storage: A call for strong international cooperation on CCS demonstration. Energy Policy. 2009;37(6):2161–5. Available from: http://dx.doi.org/10.1016/j.enpol.2009.01.020
- 4. Zhao L, Zhao R, Deng S, Tan Y, Liu Y. Integrating solar Organic Rankine Cycle into a coal-fired power plant with amine-based chemical absorption for CO2 capture. Int J Greenhouse Gas Control. 2014;31:77–86. Available from: http://dx.doi.org/10.1016/j.ijggc.2014.09.025
- 5. Jiang L, Wang RQ, Gonzalez-Diaz A, Smallbone A, Lamidi RO, Roskilly AP. Comparative analysis on temperature swing adsorption cycle for carbon capture by using internal heat/mass recovery. Appl Therm Eng. 2020;169(114973):114973. Available from: http://dx.doi.org/10.1016/j.applthermaleng.2020.114973
- 6. Mondal MK, Balsora HK, Varshney P. Progress and trends in CO2 capture/separation technologies: A review. Energy (Oxf). 2012;46(1):431–41. Available from: http://dx.doi.org/10.1016/j.energy.2012.08.006
- 7. Zhao R, Deng S, Liu Y, Zhao Q, He J, Zhao L. Carbon pump: Fundamental theory and applications. Energy (Oxf). 2017;119:1131–43. Available from: http://dx.doi.org/10.1016/j.energy.2016.11.076
- 8. Lian Y, Deng S, Li S, Guo Z, Zhao L, Yuan X. Numerical analysis on CO2 capture process of temperature swing adsorption (TSA): Optimization of reactor geometry. Int J Greenhouse Gas Control. 2019;85:187–98. Available from: http://dx.doi.org/10.1016/j.ijggc.2019.03.029
- 9. He J, Deng S, Zhao L, Zhao R, Li S. A numerical analysis on energy-efficiency performance of temperature swing adsorption for CO 2 capture. Energy Procedia. 2017;142:3200–7. Available from: http://dx.doi.org/10.1016/j.egypro.2017.12.490
- 10. Wang YN, Pfotenhauer JM, Zhi XQ, Qiu LM, Li JF. Transient model of carbon dioxide desublimation from nitrogen-carbon dioxide gas mixture. Int J Heat Mass Transf. 2018;127:339–47. Available from: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.07.068
- 11. Lee S-Y, Park S-J. A review on solid adsorbents for carbon dioxide capture. J Ind Eng Chem. 2015;23:1–11. Available from: http://dx.doi.org/10.1016/j.jiec.2014.09.001
- 12. Younas M, Sohail M, Leong LK, Bashir MJK, Sumathi S. Feasibility of CO2 adsorption by solid adsorbents: a review on low-temperature systems. Int J Environ Sci Technol (Tehran). 2016;13(7):1839–60. Available from: http://dx.doi.org/10.1007/s13762-016-1008-1
- 13. Mondino G, Grande CA, Blom R, Nord LO. Evaluation of MBTSA technology for CO2 capture from waste-to-energy plants. Int J Greenhouse Gas Control. 2022;118(103685):103685. Available from: http://dx.doi.org/10.1016/j.ijggc.2022.103685
- 14. Kadambi JR. Principles of gas–solid flows by L.-S. Fan and C. Zhu, Cambridge University Press, 1998; p. 557. Int J Multiph Flow. 2001;27(5):947–8. Available from: http://dx.doi.org/10.1016/s0301-9322(00)00072-0
- 15. Wang J, Yuan X, Deng S, Zeng X, Yu Z, Li S, et al. Waste polyethylene terephthalate (PET) plastics-derived activated carbon for CO2 capture: a route to a closed carbon loop. Green Chem. 2020;22(20):6836–45. Available from: http://dx.doi.org/10.1039/d0gc01613f
- 16. Bahrehmand H, Bahrami M. An analytical design tool for sorber bed heat exchangers of sorption cooling systems. Int J Refrig. 2019;100:368–79. Available from: http://dx.doi.org/10.1016/j.ijrefrig.2019.02.003
- 17. Golparvar B, Niazmand H, Sharafian A, Ahmadian Hosseini A. Optimum fin spacing of finned tube adsorber bed heat exchangers in an exhaust gas-driven adsorption cooling system. Appl Energy. 2018;232:504–16. Available from: http://dx.doi.org/10.1016/j.apenergy.2018.10.002
- 18. Zhang LZ. A three-dimensional non-equilibrium model for an intermittent adsorption cooling system. Sol Energy. 2000;69(1):27–35. Available from: http://dx.doi.org/10.1016/s0038-092x(00)00010-4
- 19. Clausse M, Bonjour J, Meunier F. Adsorption of gas mixtures in TSA adsorbers under various heat removal conditions. Chem Eng Sci. 2004;59(17):3657–70. Available from: http://dx.doi.org/10.1016/j.ces.2004.05.027
- 20. Hofer G, Fuchs J, Schöny G, Pröll T. Heat transfer challenge and design evaluation for a multi-stage temperature swing adsorption process. Powder Technol . 2017;316:512–8. Available from: http://dx.doi.org/10.1016/j.powtec.2016.12.062
- 21. Pirklbauer J, Schöny G, Pröll T, Hofbauer H. Impact of stage configurations, lean-rich heat exchange and regeneration agents on the energy demand of a multistage fluidized bed TSA CO2 capture process. Int J Greenhouse Gas Control. 2018;72:82–91. Available from: http://dx.doi.org/10.1016/j.ijggc.2018.03.018
- 22. Mondino G, Grande CA, Blom R, Nord LO. Moving bed temperature swing adsorption for CO2 capture from a natural gas combined cycle power plant. Int J Greenhouse Gas Control. 2019;85:58–70. Available from: http://dx.doi.org/10.1016/j.ijggc.2019.03.021
- 23. Schöny G, Dietrich F, Fuchs J, Pröll T, Hofbauer H. A Multi-Stage Fluidized Bed System for Continuous CO2 Capture by Means of Temperature Swing Adsorption – First Results from Bench Scale Experiments. Powder Technology 2007,316:519–27. Available from: https://doi.org/ 10.1016/j.powtec.2016.11.066.
- 24. Mitra S, Muttakin M, Thu K, Saha BB. Study on the influence of adsorbent particle size and heat exchanger aspect ratio on dynamic adsorption characteristics. Appl Therm Eng. 2018;133:764–73. Available from: http://dx.doi.org/10.1016/j.applthermaleng.2018.01.015
- 25. Hofer G, Schöny G, Fuchs J, Pröll T. Investigating wall-to-bed heat transfer in view of a continuous temperature swing adsorption process. Fuel Process Technol. 2018;169:157–69. Available from: http://dx.doi.org/10.1016/j.fuproc.2017.09.024
- 26. Sharafian A, McCague C, Bahrami M. Impact of fin spacing on temperature distribution in adsorption cooling system for vehicle A/C applications. Int J Refrig. 2015;51:135–43. Available from: http://dx.doi.org/10.1016/j.ijrefrig.2014.12.003
- 27. Mondino G, Grande CA, Blom R, Nord LO. Moving bed temperature swing adsorption for CO2 capture from a natural gas combined cycle power plant. SSRN Electron J. 2019; Available from: http://dx.doi.org/10.2139/ssrn.3366315
- 28. Zima W, Grądziel G, Cebula A, Rerak M, Kozak-Jagieła E, Nord LO, et al. Mathematical Model of a Power Boiler Operation Under Rapid Load Changes, PRES’21 0484 Proceedings of the 24th Conference on Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction. Vol. 1. Brno, CZ; 2021.
- 29. Mondino G, Grande CA, Blom R. Effect of gas recycling on the performance of a moving bed temperature-swing (MBTSA) process for CO2 capture in a coal fired power plant context. Energies. 2017;10(6):745. http://dx.doi.org/10.3390/en10060745
- 30. Zhao B, Wang X, Xu Y, Liu B, Cao S, Zhao Q. Reduction of dust deposition in air-cooled condensers in thermal power plants by Ni–P-based coatings. Clean Technol Environ Policy. 2021;23(6):1727–36. Available from: http://dx.doi.org/10.1007/s10098-021-02055-6
- 31. Taler D. A new heat transfer correlation for transition and turbulent fluid flow in tubes. Int J Therm Sci. 2016;108:108–22. Available from: http://dx.doi.org/10.1016/j.ijthermalsci.2016.04.022
- 32. Filonienko GK. Friction factor for turbulent pipe flow. Teploenergetika. 1954;40–4.
- 33. Majchrzak A. Testowanie i optymalizacja stałych sorbentów do usuwania CO2 ze spalin, PhD thesis. 2017.
- 34. Mondino G, Nord LO, Grande CA, Arstad B, Plassen M, Håkonsen S, et al. Initial operation of a continuous lab-scale MBTSA pilot using activated carbon adsorbent. SSRN Electron J. 2021; Available from: http://dx.doi.org/10.2139/ssrn.3812354
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-140d1fe7-18be-4a2d-9f53-693bdcec547e