Identyfikatory
Warianty tytułu
Wpływ zjawiska tarcia na poziom dyskomfortu pracy operatora żurawia leśnego
Języki publikacji
Abstrakty
A mathematical model of a forest crane that is suitable for dynamics analysis of its operation cycle is presented in this paper. The flexibility of the operator’s seat, drives and supports is taken into account. Joint coordinates are applied to describe the motion of the links together with the homogeneous transformations technique. Lagrange equations of the second order are used when deriving the equations of motions. Joint forces and torques are determined based on recursive Newton-Euler algorithms. These joint forces are then used in the LuGre friction model, which allows to calculate the friction coefficients and friction forces. Numerical analyses performed here show the influence of various friction forces on the vibration level as perceived by the operator of the crane. The level of discomfort is discussed based on standards commonly used in the vehicle and transportation industry for evaluations of vibration comfort.
W niniejszym artykule przedstawiono model matematyczny żurawia leśnego, który jest stosowany do analizy dynamiki cyklu jego pracy. Uwzględniono podatność podparcia fotela operatora, napędów oraz podpór. Do opisu ruchu członów stosuje się współrzędne złączowe i macierze przekształceń jednorodnych. Do wyprowadzenia równań ruchu modelu żurawia zastosowano podejście bazujące na formalizmie równań Lagrange’a drugiego rodzaju. Siły i momenty węzłowe są określane na podstawie rekurencyjnego algorytmu Newtona-Eulera. Siły te są następnie wykorzystywane w modelu tarcia LuGre, który pozwala obliczyć współczynniki i siły tarcia. Przeprowadzone analizy numeryczne pokazują wpływ różnych sił tarcia na poziom drgań odczuwany przez operatora żurawia. Poziom dyskomfortu operatora wywołany przez drgania maszyny został oszacowany w oparciu o często stosowane w przemyśle samochodowym i transportowym odpowiednie standardy.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
197--210
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
- Department of Mechanical Engineering Fundamentals University of Bielsko-Biala Willowa 2, 43-309 Bielsko-Biala, Poland
autor
- Department of Transport University of Bielsko-Biala Willowa 2, 43-309 Bielsko-Biala, Poland
Bibliografia
- 1. Augustynek K, Urbaś A. Comparison of bristles' friction models in dynamics analysis of spatial linkages. Mechanics Research Communications 2017, https://doi.org/10.1016/j.mechrescom.2017.01.003.
- 2. Åström K J, Canudas-de-Witt C. Revisiting the LuGre model. IEEE Control Systems Magazine. Institute of Electrical and Electronics Magazine 2008; 28(6): 101-114, https://doi.org/10.1109/MCS.2008.929425.
- 3. Cann A P, Salmoni A W, Vi P, Eger T R. An exploratory study of whole-body vibration exposure and dose while operating heavy equipment in the construction industry. Applied Occupational and Environmental Hygiene 2003; 18: 999-1005, https://doi.org/10.1080/715717338.
- 4. Courtney-Pratt J S, Eisner E. The effect of a tangential force on the contact of metallic bodies. Proceedings of the Royal Society 1957; A:529-550.
- 5. Craig J J. Introduction to robotics. Mechanics and control. Addison-Wesley Publishing Company, Inc., 1989.
- 6. BS 6841. Guide to measurement and evaluation of human exposure to whole-body mechanical vibration and repeated shock. British Standard, 1987.
- 7. Denavit J, Hartenberg R S. A kinematic notation for lower-pair mechanisms based on matrices. Journal of Applied Mechanics 1995; 23: 215-221.
- 8. Giacomin M, Hacaambwa T M. Performance of ISO2631 and BS6841 Comfort Criteria for Evaluating Automobile Road Vibrations, O1A1083, ATA 7th International Conference on the Role of Experimentation in the Modern Automotive Product Development Process, Florence, Italy, May 23-25, 2001.
- 9. Griffin M J. Handbook of Human Vibration. Elsevier Academic Press, 1990.
- 10. ISO 2631-1. Mechanical vibration and shock - Evaluation of human exposure to whole body vibration. Part 1: General requirements. International Organization for Standardization, 1997.
- 11. Jurevič E I (ed.). Dynamics of robot control. Nauka. Moscow: 1984. (in Russian)
- 12. La Hera P X, Morales D O. Non-linear dynamics modelling description for simulating the behavior of forestry cranes. International Journal of Modelling Identification and Control 2014; 21(2): 125-138, https://doi.org/10.1504/IJMIC.2014.060006.
- 13. La Hera P, Morales D O. Model-based development of control systems for forestry cranes. Journal of Control and Science and Engineering 2015; ID 256951, https://doi.org/10.1155/2015/256951.
- 14. Legnani G, Casalo F, Righettini P, Zappa B. A homogeneous matrix approach to 3D kinematics and dynamics – I. Theory, Mechanism and Machine Theory 1996; 31(5): 586-605, https://doi.org/10.1016/0094-114X(95)00100-D.
- 15. Legnani G, Casalo F, Righettini P, Zappa B. A homogeneous matrix approach to 3D kinematics and dynamics – II. Applications to chains of rigid bodies and serial manipulators. Mechanism and Machine Theory 1996; 31(5): 573-587, https://doi.org/10.1016/0094-114X(95)00100-D.
- 16. Mansfield N J. Human response to vibration. CRC Press LLC, Boca Raton, Florida, 2004, https://doi.org/10.1201/b12481.
- 17. Marques F, Flores P, Pimenta Claro J C, Lankarani H M. A survey and comparison of several friction force for dynamic analysis of multibody mechanical systems. Nonlinear Dynamics 2016; 86(3): 1407-1443, https://doi.org/10.1007/s11071-016-2999-3.
- 18. Morales D O, Westerberg S, La Hera P X, Mettin U, Freidovich L, Shiriaev A S. Increasing the level of automation in the forestry logging process with crane trajectory planning and control. Journal of Field Robotics 2014; 31(3): 343-363, https://doi.org/10.1002/rob.21496.
- 19. Papadopoulos E, Sarkar S. On the dynamic modeling of an articulated electrohydraulic forestry machine. in: Proceedings of the 1996 AIAA Forum on Advanced Developments in Space Robotics, WI, 1-2 August, 1996.
- 20. Papadopoulos E, Frenette R, Mu B, Gonthier Y. On the modeling and control of an experimental harvester machine manipulator. in: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Grenoble, France, 8-12 September, 1997,https://doi.org/10.1109/IROS.1997.656611.
- 21. Pennestri E, Rossi V, Salvini P, Valentini P P. Review and comparison of dry friction force models. Nonlinear Dynamics 2016; 83(4): 1785-1801, https://doi.org/10.1007/s11071-015-2485-3.
- 22. Posiadała B. Influence of crane support system on motion of the lifted load. Mechanism and Machine Theory 1997; 32(1): 9-20, https://doi.org/10.1016/0094-114X(96)00044-4.
- 23. Posiadała B. Modeling and analysis of the dynamics of load carrying system. in: Proc. of World Congress on Engineering and Computer Science, San Francisco, USA, 2012.
- 24. Posiadała B, Waryś P, Cekus D, Tomala M. The dynamics of the forest crane during the load carrying. International Journal of Structural Stability and Dynamics 2013; 13 (7), https://doi.org/10.1142/S0219455413400130.
- 25. Stribeck R. Die wesentlichen Eigenschaften der Gleit- und Rollenlager, Zeitschrift des Vereines Deutscher Ingenieure 2013; 46(36).
- 26. Urbaś A. Analysis of flexibility of the support and its influence on dynamics of the grab crane. Latin American Journal of Solids and Structures 2013; 10(1): 109-121, https://doi.org/10.1590/S1679-78252013000100011.
- 27. Urbaś A. Application of the Dahl friction model in the dynamics analysis of grab cranes, MATEC Web of Conferences 8347, 03008. doi:10.1051/matecconf/201 CSNDD 2016 68303008, 2016.
- 28. Urbaś A. Computational implementation of the rigid finite element method in the statics and dynamics analysis of forest cranes. Applied Mathematical Modelling 2017; 46: 750-762, https://doi.org/10.1016/j.apm.2016.08.006.
- 29. Urbaś A, Harlecki A. Application of the rigid finite element method and the LuGre friction model in the dynamic analysis of the grab crane. in: Proceedings of 4th Joint International Conference on Multibody System Dynamics, Montreal, Canada, May 29-June 2, 2016.
- 30. Urbaś A, Szczotka M. Modelling friction phenomena in the dynamics analysis of forest cranes. Engineering Transactions 2016; 64(4): 393-400.
- 31. Szczotka M. Simulation and optimisation of the steering kickback performance. Journal of Theoretical and Applied Mechanics 2011; 49(1):187-208.
- 32. Wittbrodt E, Szczotka M, Maczyński A, Wojciech S. Rigid Finite Element Method in Analysis of Dynamics of Offshore Structures. Ocean Engineering & Oceanography. Springer. Berlin-Heidelberg: 2013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-140c310f-099f-49d0-a8ca-86cb1454522f