PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phase Shifted Pulse Height Modulated Motor Control for Multiply Actuated Joints to Optimize Operating Characteristics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, we propose two model free control schemes that are based on pulse height modulation using low frequencies with the goal to compensate normal friction effects in drive trains that negatively influence the performance of e.g. a standard PID controller. The first control scheme uses pulse height modulation to especially compensate stick slip effects but increases vibration and noise in the drive train. To reduce such side effects a modified phase shifed pulse height control scheme based on multiple actuated joints is introduced. Both control schemes are compared with a standard linear controller as reference and evaluated by using six quality criteria.
Twórcy
autor
  • Space Applications Services NV/SA, Leuvensesteenweg 325, 1932 Zaventem, Belgium
autor
  • Department of Advanced Robotics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
autor
  • Neurorobotics Research Laboratory, Beuth-Hochschule für Technik Berlin, www: http://neurorobotics.eu/.
Bibliografia
  • [1] M. G. Catalano, G. Grioli, M. Garabini, F. Bonomo, M. Mancinit, N. Tsagarakis, and A. Bicchi, “VSACubeBot: a Modular Variable Stiffness Platform for Multiple Degrees of Freedom Robots”. In: International Conference on Robotics and Automation (ICRA), 2011, 5090 – 5095.
  • [2] J. Davies, R. Dixon, R. M. Goodall, and T. Steffen, “Multi-agent Control of High Redundancy Actuation”, International Journal of Automation and Computing, vol. 11, no. 1, 2014, 1 – 9.
  • [3] R. Dixon, T. Steffen, J. Davies, A. Zolotas, J. Pearson, and X. Du, “HRA-Intrinsically Fault Tolerant Actuation Through High Redundancy”, 2009.
  • [4] L. Le-Tien and A. Albu-Schäffer, “Adaptive Friction Compensation in Trajectory Tracking Control of DLR Medical Robots with Elastic Joints”. In: International Conference on Intelligent Robots and Systems (IROS), 2012.
  • [5] Maxon Motor AG. Datasheet, RE-max 17, April 2012.
  • [6] J. B. Morrell and J. K. Salisbury, “Parallel-Coupled Micro-Macro Actuators”, The International Journal of Robotics Research, 1998.
  • [7] H. Olsson, K. J. Aström, C. Canudas de Wit, M. Gäfvert, and P. Lischinsky, “Friction Models and Friction Compensation”, European Journal of Control, vol. 4, 1998, 176 – 195.
  • [8] A. A. Pervozvanski and C. Canudas-De-Wit, “Asymptotic analysis of the dither effect in systems with friction”, Automatica, vol. 38, no. 1, 2002, 105–113.
  • [9] R. R. Selmic and F. L. Lewis, “Neural-network approximation of piecewise continuous functions: application to friction compensation”, Neural Networks, IEEE Transactions on, vol. 13, no. 3, 2002, 745–751.
  • [10] M. T. Siedel. Hybride Steuerung parallel gekoppelter Aktoren am Beispiel des humanoiden Roboters Myon. PhD thesis, Institut für Informatik, Humboldt-Universität zu Berlin, 2015.
  • [11] T. Steffen, R. Dixon, R. M. Goodall, and A. Zolotas. “Requirements Analysis for High Redundancy Actuation”. Technical report, Department of Electronic and Electric Engineering, Loughborough University, 2007.
  • [12] J. Swevers, F. Al-Bender, C. Ganseman, and T. Projogo, “An integrated friction model structure with improved presliding behavior for accurate friction compensation”, Automatic Control, IEEE Transactions on, vol. 45, no. 4, 2000, 675–686.
  • [13] Y. Wang, D. Wang, and T. Chai, “Extraction and adaptation of fuzzy rules for friction modeling and control compensation”, Fuzzy Systems, IEEE Transactions on, vol. 19, no. 4, 2011, 682–693.
  • [14] Z. Wenjing, “Parameter identifiication of lugre friction model in servo system based on improved particle swarm optimization algorithm”. In: Control Conference, 2007. CCC 2007. Chinese, 2007, 135–139.
  • [15] T. Wescott. “Controlling Motors in the Presence of Friction and Backlash”. http://www.wescottdesign.com/, 2010. [Online; retrieved March 8th, 2013].
  • [16] T. M. Yang Sangsik, “Adaptive pulse width control for precise positioning under the influence of stiction and coulomb friction.”, ASME Journal of Dynamical Systems, Measurement and Control, vol. 110, 1988, 221–227.
  • [17] G. Zames and N. A. Shneydor, “Dither in nonlinear systems”, IEEE Transactions on Automatic Control, vol. 21, no. 5, 1976, 660––667.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1408f2b0-418b-4e73-b4b6-7986d3c26722
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.