PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation, characterization of a ceria loaded carbon nanotubes nanocomposites photocatalyst and degradation of azo dye Acid Orange 7

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A ceria loaded carbon nanotubes (CeO2/CNTs) nanocomposites photocatalyst was prepared by chemical precipitation, and the preparation conditions were optimized using an orthogonal experiment method. HR-TEM, XRD, UV-Vis/DRS, TGA and XPS were used to characterize the photocatalyst. Nitrogen adsorption-desorption was employed to determine the BET specifi c surface area. The results indicated that the photocatalyst has no obvious impurities. CeO2 was dispersed on the carbon nanotubes with a good loading effect and high loading effi ciency without agglomeration. The catalyst exhibits a strong ability to absorb light in the ultraviolet region and some ability to absorb light in the visible light region. The CeO2/CNTs nanocomposites photocatalyst was used to degrade azo dye Acid Orange 7 (40 mg/L). The optical decolorization rate was 66.58% after xenon lamp irradiation for 4 h, which is better than that of commercial CeO2 (43.13%). The results suggested that CeO2 loading on CNTs not only enhanced the optical decolorization rate but also accelerated the separation of CeO2/CNTs and water.
Rocznik
Strony
12--19
Opis fizyczny
Bibliogr.38 poz., rys., tab., wykr.
Twórcy
autor
  • Jiangsu University of Science and Technology, China School of Environmental and Chemical Engineering
autor
  • Jiangsu University of Science and Technology, China School of Environmental and Chemical Engineering
autor
  • Jiangsu University of Science and Technology, China School of Environmental and Chemical Engineering
Bibliografia
  • [1]. Ayanda, O.S., Fatoki, O.S., Adekola, F.A., Ximba, B.J., Akinsoji, O.S. & Petrik, L.F. (2015). Coal fly ash supported nZnO for the sorption of triphenyltin chloride, Archives of Environmental Protection, 41, pp. 59-71.
  • [2]. Campbell, C.T. & Peden, C.H.F. (2005). Oxygen vacancies and catalysis on ceria surfaces, Science, 309, pp. 713–714.
  • [3]. Chen, F., Shen, X.X., Wang, Y.C. & Zhang, J.L. (2012). CeO2 & H2O2 system catalytic oxidation mechanism study via a kinetics investigation to the degradation of acid orange7, Appllied Catalysis, B: Environmental, 121–122, pp. 223–229.
  • [4]. Chen, F., Wang, W., Chen, Z.G. & Wang, T.B. (2012). Biogenic synthesis and catalysis of porous CeO2 hollow microspheres, Journal of Rare Earths, 30, pp. 350–354.
  • [5]. Chen, F.J., Cao, Y.L. & Jia, D.Z. (2011). Preparation and photocatalytic property of CeO2 lamellar, Appllied Surface Science, 257, pp. 9226–9231.
  • [6]. Esch, F., Fabris, S., Zhou, L., Montini, T., Africh, C., Fornasiero, P., Comelli, G. & Rosei, R. (2005). Electron localization determines defect formation on ceria substrates, Science, 309, pp. 752–755.
  • [7]. Feng, T., Wang, X.d. & Feng, G.S. (2013). Synthesis of novel CeO2 microspheres with enhanced solar light photocatalyic properties, Materials Letters, 100, pp. 36–39.
  • [8]. Fu, L., Liu, Z.M., Liu, Y.Q., Han, B.X., Wang, J.Q., Hu, P.A., Cao, L.C. & Zhu, D.B. (2004). Coating carbon nanotubes with rare earth oxide multiwalled nanotubes, Advanced Materials, 16, pp. 350–352.
  • [9]. Gao, H.J., Zhao, S.Y., Cheng, X.Y., Wang, X.D. & Zheng, L.Q. (2013). Removal of anionic azo dyes from aqueous solution using magnetic polymer multi-wall carbon nanotube nanocomposite as adsorbent, Chemical Engineering Journal, 223, pp. 84–90.
  • [10]. Guerrero-Ruiz, A. (1994). Carbon monoxide hydrogenation over carbon supported cobalt or ruthenium catalysts. Promoting effects of magnesium, vanadium and cerium oxides, Appllied Catalysis, A: General, 120, pp. 71–83.
  • [11]. Iijima, S. (1991). Helical microtubules of graphitic carbon, Nature, 354, pp. 56–58.
  • [12]. Ji, P.F., Zhang, J.L., Chen, F. & Anpo, M. (2009). Study of adsorption and degradation of acid orange 7 on the surface of CeO2 under visible light irradiation, Applied Catalysis B: Environmental, 85, pp. 148–154.
  • [13]. Kang, M., Bae, Y.S. & Lee, C.H. (2005). Effect of heat treatment of activated carbon supports on the loading and activity of Pt catalyst, Carbon, 43, pp. 1512–1516.
  • [14]. Karakoti, A., Singh, S. & Dowding, J.M. (2010). Redox-active radical scavenging nanomaterials, Chemical Society Reviews, 39, pp. 4422–4432.
  • [15]. Lakshminarayanan, P.V., Toghiani, H. & Pittman, Jr, C.U. (2004). Nitric acid oxidation of vapor grown carbon nanofibers, Carbon, 42, pp. 2433–2442.
  • [16]. Long, Z. Q., Ren, L., Zhu, Z.W., Cui, D.L., Zhao, N., Li, M.L., Cui, M.S. & Huang, X.W. (2006). Synthesis of LaPO4: Ce, Terbium by Co-Precipitation Method, Journal of Rare Earths, 24, pp. 137–140.
  • [17]. Matsumoto, S. (2004). Recent advances in automobile exhaust catalysts, Catalysis Today, 90, pp. 183–190.
  • [18]. Mei, Y., Yan, J.P. & Nie, Z.R. (2010). XPS study on the influence of calcination conditions to cerium ion valence, Spestroscopy and Spectral Analysis, 30, pp. 270–273. (in Chinese)
  • [19]. Mishra, A.K., Arockiadoss, T. & Ramaprabhu, S. (2010). Study of removal of azo dye by functionalized multi walled carbon nanotubes, Chemical Engineering Journal, 162, pp. 1026–1034.
  • [20]. Park, P.W. & Ledford, J.S. (1996). Effect of crystallinity on the photoreduction of cerium oxide: A study of CeO2 and Ce/Al2O3 catalysts, Langmuir, 12, pp. 1794–1799.
  • [21]. Park, S., Vohs, J.M. & Gorte, R.J. (2000). Direct oxidation of hydrocarbons in a solid-oxide fuel cell, Nature, 404, pp. 265–267.
  • [22]. Peng, X.J., Luan, Z.K., Ding, J., Di, Z.C., Li, Y.H. & Tian, B.H. (2005). Ceria nanoparticles supported on carbon nanotubes for the removal of arsenate from water, Materials Letters, 59, pp. 399–403.
  • [23]. Planeix, J.M., Coustel, N., Coq, B., Brotons, V., Kumbhar, P.S., Dutartre, R., Geneste, P., Bernier, P. & Ajayan, P.M. (1994). Application of carbon nanotubes as supports in heterogeneous catalysis, Journal of the American Chemical Society, 116, pp. 7935–7936.
  • [24]. Pouretedal, H.R. & Kadkhodaie, A. (2010). Synthetic CeO2 nanoparticle catalysis of methylene blue photodegradation: kinetics and mechanism, Chinese Journal of Catalysis, 31, pp. 1328–1334.
  • [25]. Rao, R., Zhang, Q.Y., Liu, H.D., Yang, H.X., Ling, Q., Yang, M., Zhang, A.M. & Chen, W. (2012). Enhanced catalytic performance of CeO2 confined inside carbon nanotubes for dehydrogenation of ethylbenzene in the presence of CO2, Journal of Molecular Catalysis A: Chemical, 363–364, pp. 283–290.
  • [26]. Rodriguez, J.A., Ma, S., Liu, P., Hrbek, J., Evans, J. & Pérez, M. (2007). Activity of CeOx and TiOx nanoparticles grown on Au (111) in the water-gas shift reaction, Science, 318, pp. 1757–1760.
  • [27]. Sathish, M., Miyazawa, K. & Ye, J. (2011). Fullerene nanowhiskers at liquid-liquid interface: A facile template for metal oxide (TiO2, CeO2) nanofibers and their photocatalytic activity, Materials Chemistry and Physics, 130, pp. 211–217.
  • [28]. Singh, S., Dosani, T., Karakoti, A.S., (2011). A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties, Biomaterials, 32, pp. 6745–6753.
  • [29]. Soria, J., Coronado, J.M. & Conesa, J.C. (1996). Spectroscopic study of oxygen adsorption on CeO2/γ-Al2O3 catalyst supports, Journal of the Chemical Society, Faraday Transactions, 92, pp. 1619–1626.
  • [30]. Tang, Y.B., Chen, F.Y. & Zhang, Y.F. (2006). Water Pollution Control Engineering, Press of Harbin Institute of Technology, Harbin 2006. (in Chinese)
  • [31]. Trovarelli, A. (2002). Catalysis by Ceria and Related Materials (Catalytic Science Series, vol. 2), Imperial College Press, London 2002.
  • [32]. Trovarelli, A., Deleitenburg, C., Dolcetti, G. & Lorca, J.L. (1995). CO2 methanation under transient and steady-state conditions over Rh/CeO2 and CeO2-promoted Rh/SiO2: The role of surface and bulk ceria, Journal of Catalysis, 151, pp. 111–124.
  • [33]. Vindigni, F., Manzoli, M., Damin, A., Tabakova, T. & Zecchina A., (2011). Surface and inner defects in Au/CeO2 WGS catalysts: Relation between Raman properties, reactivity and morphology, Chemistry – A European Journal, 17, pp. 4356–4361.
  • [34]. Walton, R.I. (2011). Solvothermal synthesis of cerium oxides, Progress in Crystal Growth and Characterization of Materials, 57, pp. 93–108.
  • [35]. Zhai, Y., Zhang, S. & Pang, H. (2007). Preparation, characterization and photocatalytic activity of CeO2 nanocrystalline using ammonium bicarbonate as precipitant, Materials Letters, 61, pp. 1863–1866.
  • [36]. Zhang, D.S., Fu, H.X., Shi, L.Y., Fang, J.H. & Li, Q. (2007). Carbon nanotube assisted synthesis of CeO2 nanotubes, Journal of Solid State Chemistry, 180, pp. 654–660.
  • [37]. Zhang, D.S., Mai, H.L., Huang, L. & Shi, L.Y. (2010). Pyridine-thermal synthesis and high catalytic activity of CeO2/CuO/CNT nanocomposites, Applied Surface Science, 256, pp. 6795–6800.
  • [38]. Zhao, P.S., Song, J., Zhou, S.S., Zhu, Y., Jing, L. & Guo, Z.Y. (2013). Facile 1, 4-dioxane-assisted solvothermal synthesis, optical and electrochemical properties of CeO2 microspheres, Materials Research Bulletin, 48, pp. 4476–4480.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-140802da-41a4-4c2b-a930-89fb42fe75ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.