PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of the entire coal basin flooding on the land surface deformation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents one of the environmental problems occurring during underground mine closures: according to the underground coal mine closure programme in Germany, the behaviour of the land surface caused by flooding of the entire planned mining area – the Ruhr District – had to be addressed. It was highlighted that water drainage would need to be continuous; otherwise, water levels would rise again in the mining areas, resulting in flooding of currently highly urbanised zones. Based on the variant analysis, it was concluded that the expected uniform ground movements caused by the planned rise in the mining water levels (comprising a part of two concepts – flooding up to the level of –500 m a.s.l. and −600 m a.s.l.), in the RAG Aktiengesellschaft mines, will not result in new mining damage to traditional buildings. The analysis included calculations of the maximum land surface uplift and the most unfavourable deformation factor values on the land surface, important from the point of view of buildings and structures: tilt T, compressive strain ε– and tensile strain ε+. The impact of flooding on potential, discontinuous land surface deformation was also analysed.
Rocznik
Strony
375--392
Opis fizyczny
Bibliogr. 73 poz., rys., tab.
Twórcy
  • AGH University of Krakow, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Strata Mechanics Research Institutes of Polish Academy of Science, 27 Reymonta Str., 30-059 Kraków, Poland
  • Strata Mechanics Research Institutes of Polish Academy of Science, 27 Reymonta Str., 30-059 Kraków, Poland
autor
  • Strata Mechanics Research Institutes of Polish Academy of Science, 27 Reymonta Str., 30-059 Kraków, Poland
autor
  • RAG Aktiengesellschaft, Essen, Germany
autor
  • AGH University of Krakow, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] D. Laurence, Classification of risk factors associated with mine closure. Miner. Resour. Eng. 10, 3, 315-331 (2001). DOI: https://doi.org/10.1142/S0950609801000683.
  • [2] S. Amirshenava , M. Osanloo, Mine closure risk management: An integration of 3D risk model and MCDM techniques. J. Clean. Prod. 184, 389-401 (2018). DOI: https://doi.org/10.1016/j.jclepro.2018.01.186.
  • [3] A. Krzemień, A. Suárez Sánchez, P. Riesgo Fernández, K. Zimmermann, F. González Coto, Towards sustainability in underground coal mine closure contexts: A methodology proposal for environmental risk management. J. Clean. Prod. 139, 1044-1056 (2016). DOI: https://doi.org/10.1016/j.jclepro.2016.08.149.
  • [4] M. Dudek, K. Tajduś, R. Misa, A. Sroka, Predicting of land surface uplift caused by the flooding of underground coal mines – A case study. Int. J. Rock Mech. Min. Sci. 132 (2020). DOI: https://doi.org/10.1016/j.ijrmms.2020.104377.
  • [5] J.M. Reyes-Montes, B.L. Sainsbury, J.R. Andrews, R.P. Young, Application of cave-scale rock degradation models in the imaging of the seismogenic zone. CIM J. 7, 2, 87-92 (2016). DOI: https://doi.org/10.15834/cimj.2016.9.
  • [6] A. Vervoort, P.-Y. Declercq, Surface movement above old coal longwalls after mine closure. Int. J. Min. Sci. Technol. 27, 3, 481-490 (2017).
  • [7] M. Caro Cuenca, A.J. Hooper, R.F. Hanssen, Surface deformation induced by water influx in the abandoned coal mines in Limburg, The Netherlands observed by satellite radar interferometry. J. Appl. Geophys. 88, 1-11 (2013). DOI: https://doi.org/10.1016/j.jappgeo.2012.10.003.
  • [8] K. Skubacz et al., Modelling of radon hazards in underground mine workings. Sci. Total Environ. 695, 133853 (2019).
  • [9] A. Duda , A. Krzemień, Forecast of methane emission from closed underground coal mines exploited by longwall mining – A case study of Anna coal mine. J. Sustain. Min. 17, 4, 184-194 (2018). DOI: https://doi.org/10.1016/j.jsm.2018.06.004.
  • [10] A. Krzemień, A.S. Sanchez, P.R. Fernandez, K. Zimmermann, F.G. Coto, Towards sustainability in underground coal mine closure contexts: A methodology proposal for environmental risk management. J. Clean. Prod. 139, 1044-1056 (2016).
  • [11] “Management of environmental risks during and after mine closure, Contract No. RFCR-CT-2015-00004,” 2020.
  • [12] A.C. Sanchez, L.E. Silva-Sanchez, S.S. Neri, Guide for mine closure, no. June. 2014.
  • [13] P.M. Heikkinen et al., Mine Closure Handbook – Environmental Techniques for the Extractive Industries. 2008.
  • [14] C. Didier et al., Mine Closure and Post-Mining Management International State-of-the-Art International Commission on Mine Closure International Society for Rock Mechanics, no. November 2008, (2008). DOI: https://doi.org/10.13140/2.1.3267.8407.
  • [15] E. Krause, Z. Pokryszka, Investigations on Methane Emission from Flooded Workings of Closed Coal Mines. J. Sustain. Min. 12, 2, 40-45 (2013). DOI: https://doi.org/10.7424/jsm130206.
  • [16] L. Jorge et al., Surface water monitoring in abandoned mercury mine sites in Asturias (Spain): Comparative Studies, 595-601 (2003).
  • [17] D. Johnston, H. Potter, C. Jones, S. Rolley, I. Watson, J. Pritchard, Abandoned mines and the water environment, no. SC030136/SR41\rSCHO0508BNZS-E-P. 2008.
  • [18] J. Bondaruk, E. Janson, M. Wysocka, S. Chałupnik, Identification of hazards for water environment in the Upper Silesian Coal Basin caused by the discharge of salt mine water containing particularly harmful substances and radionuclides. J. Sustain. Min. 14, 4, 179-187 (2015). DOI: https://doi.org/10.1016/j.jsm.2016.01.001.
  • [19] S. Corbel, J. Kaiser, S. Vicentin, Coal Mine Flooding in the Lorraine-Saar Basin: Experience from the French Mines. IMWA 2017 – Mine Water Circ. Econ. 1, 161-166 (2017). [Online]. Available: file:///N:/Literatur/Literatur/IMWA Proceedings/imwa_2017/IMWA2017_Corbel_161.pdf.
  • [20] J. Zeman, M. Černík, I. Šupíková, Dynamic model of long term geochemical evolution of mine water after mine closure and flooding. no. February 2016, pp. 828-836, (2009).
  • [21] M. Wysocka, Radon in the investigations of geo-hazards in Polish collieries. Geofluids, 10, 4, 564-570 (2010). DOI: https://doi.org/10.1111/j.1468-8123.2010.00306.x.
  • [22] S. Samsonov, N. D’Oreye, B. Smets, Ground deformation associated with post-mining activity at the FrenchGerman border revealed by novel InSAR time series method. Int. J. Appl. Earth Obs. Geoinf. 23, 142-154 (2013). DOI: https://doi.org/10.1016/j.jag.2012.12.008.
  • [23] A. Vervoort , P.-Y. Declercq, Upward surface movement above deep coal mines after closure and flooding of underground workings. Int. J. Min. Sci. Technol. 28, 1, 53-59 (2018). DOI: https://doi.org/10.1016/j.ijmst.2017.
  • [24] D.P. Sainsbury, B.L. Sainsbury, L.J. Lorig, Investigation of caving induced subsidence at the abandoned Grace Mine. Trans. Institutions Min. Metall. Sect. A Min. Technol. 119, 3, 151-161 (2010). DOI: https://doi.org/10.1179/174328610X12820409992336.
  • [25] K. Tajduś, A. Sroka, R. Misa, M. Dudek, Przykłady zagrożeń powierzchni terenu deformacjami nieciągłymi typu powierzchniowego ujawniające się nad zlikwidowanymi podziemnymi wyrobiskami górniczymi. Pr. Inst. Mech. Górotworu PAN 19, 3, 3-10 (2017).
  • [26] J.J.E. Pöttgens, Bodenhebung durch ansteigendes Grubenwasser,” in 6. Internationaler Kongress für Markscheidewesen, pp. 928-938, (1985).
  • [27] J. Fenk, Hebungen der tagesoberflache uber stillgelegten steinkohlenbergwerken im Zwickau-Oelsnitzer Revier (diskussionsbeitrag) (DISKUSSIONSBEITRAG). Freib. Forschungshefte. R. A 847, 208-234 (1998).
  • [28] J.J.E. Pöttgens, Bodenhebung und Grundwasseranstieg aus geotechnischer und markscheiderisch-geodätischer Sicht im Aachen-Limburger Kohlenrevier. Freib. Forschungshefte, Bergbau und Geotech. 847, 193-207 (1998).
  • [29] R.F. Bekendam, J.J.E. Pöttgens, Ground movements over the coal mines of southern Limburg, The Netherlands, and their relation to rising mine waters, in 5tfh international symposium on land subsidence, pp. 3-12, (1995).
  • [30] J. Fenk, Eine analytische Lösung zur Berechnung von Hebungen der Tagesoberfläche bei Flutung unterirdischer Bergwerksanlagen. Markscheidewesen 107, 4220-4422 (2000).
  • [31] J. Fenk, D. Tzscharschuch, Zur Berechnung flutungsbedingter Hebungen der Tagesoberfläche. Markscheidewesen 114, 2, 60-64 (2007).
  • [32] A. Sroka, J. Fenk, Studie zu Auswirkungen des Grubenwasseranstiegs auf Bewegungen der Tagesoberfläche in stillgelegten Bergbaubereichen des Saarlandes, (2003).
  • [33] A. Sroka, Ein Beitrag zur Vorausberechnung der durch den Grubenwasseranstieg bedingten Hebungen, in 5. Altbergbau-Kolloquium, pp. 453-462, (2005).
  • [34] A. Sroka, A. Preuβe, M. Holzheim, Auswirkung des Grubenwasseranstiegs auf die Tagesoberfläche – Stand der Forschung, in 8. Aachener Altlasten- und Bergschadenkundliches Kolloquium, pp. 57-68, (2006).
  • [35] S. Knothe, Effect of time on formation of basin subsidence. Arch. Min. Steel Ind. 1, 1, 1-7 (1953).
  • [36] A. Sroka, Contribution to the Prediction of Ground Surface Movements Caused by a Rising Water Level in a Flooded Mine. In Proceedings International Mining forum, pp. 57-68 (2006).
  • [37] P. Goerke-Mallet, Untersuchungen zu raumbedeutsamen Entwicklungen im Steinkohlenrevier Ibbenbüren unter besonderer Berücksichtigung der Wechselwirkungen von Bergbau und Hydrogeologie. Rheinisch- Westfälischen Technischen Hochschule Aachen, (2000).
  • [38] A. Preuβe, A. Sroka, Projekt Risiken durch Grubenwasseranstieg. 3. Zwischenbericht, (2008).
  • [39] A. Sroka, A. Preuβe, Zur Prognose flutungsbedingter Hebungen. in 9. Altbergbau-Kolloquium, pp. 184-196, (2009).
  • [40] A. Preuβe, A. Sroka, Schlussbericht zum Forschungsvorhaben „Risiken durch Grubenwasseranstieg“, Herne (2015).
  • [41] A. Graovski, A. Sroka, C. Wedekind, Untersuchungen zu Auswirkungen an der Tagesoberfläche nach Einleitung der Flutung am Beispiel des Sanierungsstandortes Königstein der Wismut GmbH. In 14. Geokinematischer Tag, pp. 60-74, (2013).
  • [42] S.G. Aviershin, Mining subsidence engineering (in Russian). Moscow, Russia: Handbook, Ugletiechizdat.
  • [43] J. Zhao, H. Konietzky, Numerical analysis and prediction of ground surface movement induced by coal mining and subsequent groundwater flooding. Int. J. Coal Geol. 229, p. 103565, Sep. (2020). DOI: https://doi.org/10.1016/j.coal.2020.103565.
  • [44] W. Milczarek, Analiza zmian powierzchni górotworu po zakończonej eksploatacji górniczej w wybranym rejonie dawnego Wałbrzyskiego Zagłębia. Politechnika Wrocławska, (2011).
  • [45] M. Wesołowski, R. Mielimąka, M. Jendruś Rafałand Popczyk, Influence Analysis of Mine Flooding from the Environmental Standpoint: Surface Protection. Polish J. Environ. Stud. 27, 2, 905-915 (2018). DOI: https://doi.org/10.15244/pjoes/76114.
  • [46] M. Dudek , K. Tajduś, FEM for prediction of surface deformations induced by flooding of steeply inclined mining seams. Geomech. Energy Environ., p. 100254, Apr. (2021). DOI: https://doi.org/10.1016/j.gete.2021.100254.
  • [47] K. Tajduś, Numerical simulation of underground mining exploitation influence upon terrain surface. Arch. Min. Sci. 58, 3 (2013).
  • [48] K. Tajduś, A. Sroka, A. Tajduś, A. Preusse, Three dimensional modeling of a surface displacements as a result of an underground longwall panel extraction. Proceedings – 29th International Conference on Ground Control in Mining, ICGCM, pp. 105-110 (2010).
  • [49] S.R. Islavath, D. Deb, H. Kumar, Development of a roof-to-floor convergence index for longwall face using combined finite element modelling and statistical approach. Int. J. Rock Mech. Min. Sci. 127, 104221, Mar. (2020). DOI: https://doi.org/10.1016/j.ijrmms.2020.104221.
  • [50] R. Pan et al., A new model for the identification of subcritical surface subsidence in deep pillarless mining. Eng. Fail. Anal. 129, 105631, Nov. (2021). DOI: https://doi.org/10.1016/j.engfailanal.2021.105631.
  • [51] J. Shu, L. Jiang, P. Kong, P. Wang, P. Zhang, Numerical Modeling Approach on Mining-Induced Strata Structural Behavior by Considering the Fracture-Weakening Effect on Rock Mass. Appl. Sci. 9, 9, 1832, May (2019). DOI: https://doi.org/10.3390/app9091832.
  • [52] A. Darvishi, M. Ataei, R. Rafiee, Investigating the effect of simultaneous extraction of two longwall panels on a maingate gateroad stability using numerical modelling. Int. J. Rock Mech. Min. Sci. 126, 104172, Feb. (2020). DOI: https://doi.org/10.1016/j.ijrmms.2019.104172.
  • [53] G. Feng, P. Wang, Simulation of recovery of upper remnant coal pillar while mining the ultra-close lower panel using longwall top coal caving. Int. J. Min. Sci. Technol. 30, 1, 55-61, Jan. (2020). DOI: https://doi.org/10.1016/j.ijmst.2019.12.017.
  • [54] Z. Guangchao et al., Ground response of entries driven adjacent to a retreating longwall panel. Int. J. Rock Mech. Min. Sci. 138, 104630, Feb. (2021). DOI: https://doi.org/10.1016/j.ijrmms.2021.104630.
  • [55] G. Cheng et al., Characteristics of stratum movement induced by downward longwall mining activities in middledistance multi-seam. Int. J. Rock Mech. Min. Sci. 136, 104517, Dec. (2020). DOI: https://doi.org/10.1016/j.ijrmms.2020.104517.
  • [56] P. Małkowski, Z. Niedbalski, A comprehensive geomechanical method for the assessment of rockburst hazards in underground mining. Int. J. Min. Sci. Technol. 30, 3, 345-355, May (2020). DOI: https://doi.org/10.1016/j.ijmst.2020.04.009.
  • [57] W. Szott, M. Słota-Valim, A. Gołąbek, K. Sowiżdżał, P. Łętkowski, Numerical studies of improved methane drainage technologies by stimulating coal seams in multi-seam mining layouts. Int. J. Rock Mech. Min. Sci. 108, 157-168, Aug. (2018). DOI: https://doi.org/10.1016/j.ijrmms.2018.06.011.
  • [58] E.F. Salmi, M. Karakus, M. Nazem, Assessing the effects of rock mass gradual deterioration on the long-term stability of abandoned mine workings and the mechanisms of post-mining subsidence – A case study of Castle Fields mine. Tunn. Undergr. Sp. Technol. 88, 169-185, Jun. (2019). DOI: https://doi.org/10.1016/j.tust.2019.03.007.
  • [59] M. Sepehri, D.B. Apel, R.A. Hall, Prediction of mining-induced surface subsidence and ground movements at a Canadian diamond mine using an elastoplastic finite element model. Int. J. Rock Mech. Min. Sci. 100, 73-82, Dec. (2017). DOI: https://doi.org/10.1016/j.ijrmms.2017.10.006.
  • [60] Z.P. Wu, S.H. Qiu, Y. Li, Numerical Simulation of Inclined Multi-Seam Mining Subsidence of Considered the Impact by Faults. Adv. Mater. Res. 250-253, 2135-2140, May (2011). DOI: https://doi.org/10.4028/www.scientific.net/AMR.250-253.2135.
  • [61] ITB. Instrukcja 416/2006. Projektowanie budynków na terenach górniczych. Warszsawa: Instytut Techniki Budowlanej, 2006.
  • [62] M. Kawulok, Diagnozowanie budynków zlokalizowanych na terenach górniczych. Instytut Techniki Budowlanej, 2021.
  • [63] K. Firek, J. Rusek, Partial least squares method in the analysis of the intensity of damage in prefabricated largeblock building structures. Arch. Min. Sci. 62, 2 (2017). DOI: https://doi.org/10.1515/amsc-2017-0020.
  • [64] A. Wodyński, Zużycie techniczne budynków na terenach górniczych (Technical wear of buildings in mining areas). AGH Publishing House, (2007).
  • [65] J. Kwiatek, Zasady oceny możliwości prowadzenia podziemnej eksploatacji górniczej z uwagi na ochronę obiektów budowlanych (ang. Principles of assessing the possibility of conducting underground mining due to the protection of buildings), Główny Inst. Górnictwa, Ser. Instr., no. 12, (2000).
  • [66] H. Schmidt-Schleicher, Vorschlag zur Erfassung und Bewertung historischer Bauwerke in Bergsenkungsge-bieten, Bergbau und Denkmal, 15, 77-82 (1998).
  • [67] V. Staege, F.W. Pohl, Ein Vorschlag zur Erfassung und Bewertung historischer Bauwerke in Bergrenkungsgebicteneim Rahmen der Umwelt-Verträglichkertsstudie. Bauingenieur 75, 4, 192-197 (2000).
  • [68] K.H. Heitfeld, M. Heitfeld, P. Rosner, H. Sahl, Kontrollierter Grubenwasseranstieg im Aachener und Sudlimburger Steinkholenrevier, in 5. Aachener Bergschandemkundliches Kolloquium, pp. 71-85, (2003).
  • [69] M. Heitfeld, P. Rosner, M. Mühlenkamp, H. Sahl, Bergschäden im Erkelenzer Steinkohlenrevier, in 4. Altbergbaukolloquium, pp. 281-295, (2004).
  • [70] E. Grun, Analyse und Prognose von Unstetigkeiten als Folge Bergbaubedinger Bodenbewegungen im linksrheinischen Steinkohlengebiet, Aachen RWTH. Aachen, (1995).
  • [71] A. Kowalski, Surface Deformation for Today’s Hard Coal Mining in Poland, Górnictwo i Geoinżynieria 3,1 (2007).
  • [72] T. Szwedzicki, Program for mine closure, Miner. Resour. Eng. 10, 03, 347-364 (2001). DOI: https://doi.org/10.1142/S0950609801000701.
  • [73] A. Sroka, E. Grün, 2nd opinion on how mining in 479’s panel in the Johann seam is likely to impact on the BAB A43 bridge over Dorstener Strasse (B225) (1996).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-140484f3-0d24-435a-912c-3a3a61ae876b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.