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Abstract. We prove a dichotomy result giving the positivity preserving property for a
biharmonic equation with Dirichlet boundary conditions arising in MEMS models. We adapt
some ideas in [H.-Ch. Grunau, G. Sweers, Positivity for equations involving polyharmonic
operators with Dirichlet boundary conditions, Math. Ann. 307 (1997), 589–626].
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1. INTRODUCTION

In this paper, we focus on the following biharmonic equation with Dirichlet boundary
conditions {

∆2u− τ∆u = f in Ω,
u = ∇u = 0 on ∂Ω,

(1.1)

where τ > 0 and Ω is a smooth bounded domain of Rn (n ≥ 2). Equation (1.1)
arises for example in the micro-electromechanical systems (MEMS devices) giving
the modelization of electrostatic actuation for membranes deflecting on thin plates in
the field of nanotechnology detection systems [7,8]. The Dirichlet boundary conditions
are also called clamped boundary conditions giving rise to zero vertical displacement
and zero slope. The positive parameter τ represents the tension constant rising in the
stretching energy sector in the presence of elastic deformation.

Our motivation comes from the fact that the maximum principle or the positivity
preserving property fails often in the case of Dirichlet boundary conditions with the
polyharmonic operators, on the contrary for the case of Navier boundary conditions
(u = ∆u = 0 on ∂Ω). More precisely, we are interested in the following question: if the
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source term f is positive in Ω, do we have the solution u of (1.1) positive in Ω, for
any τ > 0?

For the one-dimensional case, Grunau (see [3, Proposition 1]) has given a positive
answer to this question. He proved that for λ ≤ 0 and a ∈ R, for every solution u of

{
u′′′′ + au′′′ + λu′′ = f in (−1, 1),

u(−1) = u′(−1) = u(1) = u′(1) = 0,
(1.2)

we have 0 6≡ f ≥ 0 implies u > 0 (the solution operator for (1.2) is said to be strongly
positively preserving). The case λ > 0 (which corresponds to τ < 0 in our situation)
was also well understood in [3].

This result was recently extended by Laurençot and Walker [6] giving a general
result on the sign-preserving property in radial symmetry for a ball in Rn, n ≥ 2.
Nevertheless, in Section 2, we give a very simple and direct proof showing that if Ω
is a ball in Rn, (n ≥ 2) and if the source term f is radially symmetric, then for any
τ > 0, problem (1.1) is strongly positivity preserving, i.e. u > 0 if 0 6≡ f ≥ 0 (see
Proposition 2.1 below).

Our main concern here is to show a dichotomy result, adapting some ideas and
techniques used by Grunau and Sweers [4] in the study of positivity for equations
involving (−∆)m and the Dirichlet boundary conditions (see also [2] and the references
therein). In fact, we consider the problem

{
∆2u− τ∆u = a(x)u+ f in Ω,

u = ∇u = 0 on ∂Ω.
(1.3)

Let Λτ1 denote the first eigenvalue of the operator Lτ = ∆2 − τ∆ under the Dirichlet
boundary conditions given by

Λτ1 = inf
u∈H2

0 (Ω)\{0}

‖∆u‖2L2 + τ‖∇u‖2L2

‖u‖2L2

> 0.

Let Φτ1 be a corresponding eigenfunction. Define (Lτ − a)inv the Green operator
corresponding to the problem (1.3):

u = (Lτ − a)invf.

It is well known that for a ∈ C(Ω) verifying maxΩ a < Λτ1 and p > 1, the operators

(Lτ − a)inv : Lp(Ω)→W 4,p(Ω) ∩W 2,p
0 (Ω)

are well defined.
We say that an operator T : Lp(Ω) → Lp(Ω) is positivity preserving if 0 6≡ f ≥ 0

implies Tf ≥ 0, and T is strongly positivity preserving if 0 6≡ f ≥ 0 implies Tf > 0.
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Our main result is the following.

Theorem 1.1. Let p > 1. Suppose that there holds Φτ1 > 0 in Ω. Then there exists
−∞ < λc ≤ Λτ1 such that for all a ∈ C(Ω), we have, for u and f ∈ Lp(Ω) verifying
(1.3):

1) If λc ≤ a < Λτ1 in Ω, then (Lτ −a)inv is positivity preserving, i.e. f ≥ 0 =⇒ u ≥ 0.
2) If a < λc in Ω, then (Lτ − a)inv is not positivity preserving. Indeed, we have in

this case:
i) 0 6≡ f ≥ 0 =⇒ u � 0,
ii) ∃ 0 6≡ f ≥ 0 with u ≥ 0,
iii) ∃ 0 6≡ f ≥ 0 with u � 0.

This result is analogous to Corollary 6.4 in [4] stated for general bounded domains
Ω in Rn, n ≥ 2, with ∂Ω ∈ C2m,γ for some γ > 0, m ≥ 2:

{
(−∆)mu = a(x)u+ f in Ω,

Dmu := (Dku)k∈Nn,|k|≤m−1 = 0 on ∂Ω.
(1.4)

The problem (1.4) with a(x) ≡ 0 and Ω is a unit ball B ⊂ Rn for any n, was studied
by Boggio [1] who showed the positivity preserving result by proving the positivity of
the Green function. However, it is well known that the positivity preserving property
could no longer hold true even for some convex two-dimensional domains with ∆2 and
the Dirichlet boundary conditions. On the other hand, Grunau and Sweers proved in
[5] that for domains with small Ck deformation from the ball, the Green function
remains positive, while the positivity preserving breaks down when the deformation
becomes important. For more discussions, we refer to the book [2].

Here we consider the case m = 2 but with τ > 0 in (1.3). That means that we
consider a lower order perturbation of the biharmonic operator ∆2 by adding the term
−τ∆u. We should remark that the coercivity of the operator Lτ cannot imply the
positivity preserving property for Lτ . We know also by Theorem 5.1 in [4] that when
τ and a(x) are small and Ω is a ball, problem (1.3) is strongly positivity preserving.
Our contribution consists then in considering ∆2− τ∆ instead of just the biharmonic
operator ∆2 (in view of Corollary 6.4) and a general bounded smooth domain Ω
instead of a ball.

Following the ideas in [4], a key point to prove in Theorem 1.1 above is some kind
of continuity result for the positivity preserving property (see Proposition 3.2) and a
crucial result asserting that when λ << 0, the operator

(Lτ − λ)inv : Lp(Ω)→W 4,p(Ω) ∩W 2,p
0 (Ω) ⊂ Lp(Ω)

is not positivity preserving (see Proposition 3.4). Such a result for λ << 0 is proved
using the continuity result together with the construction of some changing-sign so-
lution. We adapted techniques in [4] and used a simple but very helpful result (see
Lemma 3.3) in order to overcome the difficulty introduced by the harmonic pertur-
bation. Actually, what we will need is a pointwise estimate for the infinity norm of a
solution u to problem (1.1) with a constant souce term f ≡ 1 on a ball BR, and this
is provided by the technical Lemma 3.3.
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2. POSITIVITY PRESERVING FOR RADIAL SOLUTIONS IN DIMENSION n

Consider the problem
{

∆2u− τ∆u = f(x) in B,
u = ∇u = 0 on ∂B, (2.1)

where B := B(0, 1) is the unit ball in Rn, n ≥ 2.

Proposition 2.1. Suppose that the source term f is radially symmetric, then for any
τ > 0, problem (2.1) is strongly positivity preserving, i.e. u > 0 if 0 6≡ f ≥ 0.

Proof. Let f be nonnegative and radially symmetric, i.e. f(x) = f(r), with 0 ≤ r =
|x| ≤ 1. Then the solution u to problem (2.1) is radially symmetric. Let v = −∆u
in B then v is radially symmetric and satisfies

(−∆ + τ)v = f ≥ 0 in B. (2.2)

If v(1) ≥ 0, by the strong maximum principle for Lτ := −∆ + τ, we know that
v > 0 in B. This is just impossible, since using the Dirichlet boundary condition,
there holds ∫

B

vdx =

∫

∂B

∂u

∂ν
dσ = 0.

Therefore, v(1) < 0.
Using again the maximum principle for Lτ , we cannot have a subdomain Ω ⊂ B

such that v < 0 in Ω and v = 0 on ∂Ω. So there exists r0 ∈ (0, 1) such that v ≥ 0 in
(0, r0) and v < 0 in (r0, 1]. Then the function

r 7→ h(r) :=

∫

Br

vdx = −u′(r)rn−1|∂B|

is nondecreasing in (0, r0) and decreasing in (r0, 1], which means h(r) ≥ 0 for 0 < r < 1
as h(0) = h(1) = 0. So u is nonincreasing w.r.t. r, which yields finally u > 0 in B
since u|∂B = 0 and u is decreasing near 1.

3. A DICHOTOMY RESULT FOR POSITIVITY PRESERVING PROPERTY

In what follows, Ω is a general smooth domain and we prove some results inspired
by [4].

Proposition 3.1. Let p > 1. Let u ∈W 4,p(Ω)∩W 2,p
0 (Ω) and f ∈ Lp(Ω) satisfy (1.3).

Suppose that we have Φτ1 > 0 in Ω. If 0 6≡ a− Λτ1 ≥ 0, then

0 6≡ f ≥ 0 =⇒ u � 0 (positivity killing).

If a ≡ Λτ1 , then for 0 6≡ f ≥ 0 there is no solution.
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Proof. Suppose that we have 0 6≡ f ≥ 0 and 0 6≡ u ≥ 0. Then

0 <

∫

Ω

fΦτ1dx =

∫

Ω

(Lτu− au)Φτ1dx =

∫

Ω

u(Λτ1 − a)Φτ1dx ≤ 0, (3.1)

which is a contradiction if 0 6≡ a− Λτ1 ≥ 0.
If a ≡ Λτ1 , again from (3.1), we see that no solution could exist.

Proposition 3.2. Let τ > 0, a ∈ C(Ω) with a < Λτ1 . Suppose that

(Lτ − a)inv : Lp(Ω)→W 4,p(Ω) ∩W 2,p
0 (Ω) ⊂ Lp(Ω)

is positivity preserving (resp. strongly positivity preserving) for p > 1. Then for all
b ∈ C(Ω) with a ≤ b < Λτ1 in Ω, we have (Lτ − b)inv is also positivity preserving
(resp. strongly positivity preserving).

Proof. We will prove only for the positivity preserving case, since the other one is
completely similar.

First assume that p ≥ 2. Suppose that u ∈ W 4,p(Ω) ∩ W 2,p
0 (Ω) satisfies

Lτu− bu = f in Ω with b− a ≥ 0. Then u solves Lτu− au = f + (b− a)u in Ω.
Consider now the nonlinear problem

{
(Lτ − a)v = f + (b− a)|v| in Ω,

v = ∇v = 0 on ∂Ω,
(3.2)

and the corresponding energy functional F on H2
0 (Ω) defined by

F (v) =

∫

Ω

[
(∆v)2 + τ |∇v|2 − av2 − 2fv − (b− a)|v|v

]
dx.

Set

ε = min

{
2Λτ1 , min

x∈Ω
(Λτ1 − b(x))

}
> 0.

Then we have

F (v) ≥
∫

Ω

[
(∆v)2 + τ |∇v|2 − 2fv − bv2

]
dx ≥

≥ ε

2Λτ1

∫

Ω

[
(∆v)2 + τ |∇v|2

]
dx+

∫

Ω

[(
Λτ1 −

1

2
ε− b

)
v2 − 2fv

]
dx ≥

≥ ε

2Λτ1

∫

Ω

(∆v)2dx+

∫

Ω

(
1

2
εv2 − 2fv

)
dx ≥

≥ ε

2Λτ1

∫

Ω

(∆v)2dx− 1

ε

∫

Ω

f2dx.
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Since F (·) is weakly lower semicontinuous and coercive in H2
0 (Ω), there exists a

minimizer u∗ ∈ H2
0 (Ω) which verifies the Euler-Lagrange equation (Lτ − a)u∗ =

f+(b−a)|u∗|. Using regularity theory and appropriate embeddings, a boot-strapping
argument leads to u∗ ∈W 4,p(Ω) ∩W 2,p

0 (Ω).
Coming back to the positivity preserving hypothesis of the operator (Lτ − a)inv,

as f + (b− a)|u∗| ≥ 0, we have then the solution u∗ of (3.2) is nonnegative:

u∗ = (Lτ − a)inv(f + (b− a)|u∗|) ≥ 0.

Hence u∗ solves (1.3) with b instead of a, that is u = u∗ ≥ 0.
Finally, for p ∈ (1, 2), the claim follows by approximating f ∈ Lp(Ω) by a sequence

fk ∈ L2(Ω).

Lemma 3.3. Let τ > 0 and u be the solution to
{

∆2u− τ∆u = 1 in BR := B(0, R) ⊂ Rn,
u = ∆u = 0 on ∂BR.

(3.3)

Then ‖u‖∞ <
R2

2τn
.

Proof. Let v = −∆u. Then −∆v + τv = 1 and v = 0 on ∂BR. So immediately
0 ≤ v < τ−1 by the maximum principle, or equivalently, as u is radial,

0 ≤ − 1

rn−1
(rn−1u′)′ <

1

τ
, 0 < r ≤ R.

Integrating from 0 to r > 0, we obtain 0 ≤ −rn−1u′ < rn

τn , that is 0 ≤ −u′ < r
τn for

r ∈ (0, R]. Then integrating from 0 to R, as u is decreasing and u = 0 on ∂BR, we
obtain u(0) = ‖u‖∞ < R2

2τn .

Applying Proposition 3.2 and Lemma 3.3, we get the following crucial result.

Proposition 3.4. For λ << 0, the operator

(Lτ − λ)inv : Lp(Ω)→W 4,p(Ω) ∩W 2,p
0 (Ω) ⊂ Lp(Ω),

p > 1, is not positivity preserving for any τ > 0.

Proof. Using first Proposition 3.2, if (Lτ )inv is not positivity preserving, we are done
as Λτ1 > 0.

Hence we may assume that (Lτ )inv preserves the positivity. We will construct as
in [4] a nonpositive nontrivial test function a ∈ C(Ω) such that (Lτ − a)inv is not
positivity preserving. Therefore we would have (Lτ−λ)inv is not positivity preserving
for λ ≤ min a < 0, since otherwise we get a contradiction, again by Proposition 3.2.

The construction of such a function a is related to the construction of a
sign-changing function ũ satisfying (Lτ − a)invũ ≥ 0 in Ω and ũ = ∇ũ = 0 on
∂Ω. Set v1 = (Lτ )inv1, which is then positive by our assumption. By scaling, we may
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assume that Ω contains the unit ball B and let u0 be the solution to (3.3) on B.
Consider ε > 0 small and the function

uε(x) = 16r2 − ε− 32τnu0(0) + 32τnu0(x),

where r = |x|. As u0(0) < 1
2τn by Lemma 3.3, we can choose ε small enough such

that uε(1) = 16 − ε − 32τnu0(0) > 0. Hence there exists an interval [r1, r2] ⊂ (0, 1)
verifying uε > 0 in [r1, r2].

Now fix r3 ∈ (r1, r2) and consider the cut-off function χ ∈ C∞c (Ω) such that
supp(χ) ⊂ {|x| ≤ r3} and χ ≡ 1 on {|x| ≤ r0} for r1 < r0 < r3. Define finally

ũ(x) = χ(r)uε(x) + [1− χ(r)] v1(x).

For |x| ≥ r3, χ ≡ 0, we have then ũ(x) = v1(x) ≥ 0 and Lτ ũ = Lτv1 = 1.
We have also ũ(x) = uε(x) in Br0 , hence Lτ ũ = Lτuε = 0 on Br0 and ũ(0) =

uε(0) = −ε < 0. Moreover, in Br3 \ Br0 , ũ = χ(r)uε(x) + [1− χ(r)] v1(x) > Cε > 0
and Lτ ũ ≥ −C for some positive constants Cε and C. We can conclude then

Lτ ũ =

{
0 in Br0 ,
1 in Ω \Br3 ,

and





ũ(0) < 0,

ũ(x) > 0 in Ω \Br1 ,
ũ = ∇ũ = 0 on ∂Ω.

The Dirichlet boundary condition comes from tha fact ũ ≡ v1 for |x| ≥ r3.
Finally, set a(x) = −Mχ1(r) ≤ 0 with χ1 a cut-off function χ1(r) ≡ 1 on

{r0 ≤ |x| ≤ r3} and supp(χ1) ⊂ {r1 < |x| < r2}. By choosing the constant M > 0
sufficiently large, we can claim that the sign-changing function ũ verifies (Lτ−a)ũ ≥ 0
in Ω. Hence Proposition 3.2 yields that (Lτ − λ)inv is not positivity preserving for
λ ≤ min a < 0.

Using Propositions 3.1, 3.2 and 3.4, we are now able to prove the dichotomy result.

Proof of Theorem 1.1. From Propositions 3.1 and 3.2, one finds that the set of λ ∈ R
for which the operator (Lτ−a)inv : Lp(Ω)→W 4,p(Ω)∩W 2,p

0 (Ω) ⊂ Lp(Ω) is positivity
preserving is an interval [λc,Λ

τ
1) or (λc,Λ

τ
1). Proposition 3.4 yields that λc > −∞.

Since λ 7→ (Lτ−λ)inv is continuous except at the eigenvalues, we find that the interval
is left closed.

The previous argument by Proposition 3.2 implies clearly claim 2 iii). Moreover,
for claim 2 ii), we can just take u = Φτ1 which verifies Φτ1 > 0 and (Lτ − a)Φτ1 =
(Λτ1 − a)Φτ1 > 0.

Let a < λc ≤ Λτ1 in Ω and suppose that for some 0 6≡ f ≥ 0, u = (Lτ −a)invf ≤ 0.
Then

0 <

∫

Ω

fΦτ1dx =

∫

Ω

(Lτu− au)Φτ1dx =

∫

Ω

u(Λτ1 − a)Φτ1dx ≤ 0,

which is impossible, hence we get claim 2 i).
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