PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Raman spectroscopy analysis in unconventional natural gas reservoirs – density and pressure dependence on Raman signal intensity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper contains information about Raman spectroscopy, describing its possible application in the oil and gas industry. This method allows the performance of a series of repetitive measurements to determine the composition of samples and its changes with high accuracy. In the article, the data presented in the literature connected with Raman spectroscopy and the oil and gas industry is analyzed. This paper considered measurements of a natural gas composition in simulated in-situ conditions performed using Raman spectroscopy. The current research project is trying to develop a mobile apparatus which would use Raman spectroscopy for defining reservoir fluid compounds in high pressure and high temperature conditions. The preliminary measurements were carried out in the simulated in-situ in variant pressure conditions.
Rocznik
Strony
761--774
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, Krakow, Poland
  • AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, Krakow, Poland - PhD student
autor
  • AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, Krakow, Poland - PhD student
  • AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, Krakow, Poland - student
Bibliografia
  • [1] Shale oil and shale gas are globally abundant. U.S. Energy Information Administration, September 2014.
  • [2] Nagy S., Siemek J.: Shale gas in Europe: the state of the technology-challenges and opportunities. Archives of Mining Sciences, vol. 56, 2011, pp. 727–760.
  • [3] Siemek J., Nagy S.: Energy Carriers Use in the World: Natural Gas–Conventional and Unconventional Gas Resources. Archives of Mining Sciences, vol. 57, no. 2, 2012, pp. 283–312.
  • [4] World Shale Resource Assessment. U.S. Energy Information Administration, September 2015.
  • [5] Siemek J., Nagy S., Siemek P.: Challenges for sustainable development: the case of shale gas exploitation in Poland. Problemy Ekorozwoju, t. 8, nr 1, 2013, pp. 91–104.
  • [6] Kaliski M., Nagy S., Siemek J., Sikora A., Szurlej A.: Unconventional natural gas – USA, the European Union, Poland. Archiwum Energetyki, t. 42, 2012, pp. 109–122.
  • [7] Stan prac poszukiwawczych za gazem z łupków w Polsce. Serwis Informacyjny Państwowej Służby Geologicznej, 2016, http://infolupki.pgi.gov.pl.
  • [8] Hendel J., Kuczyński S., Sikora A.: Shale gas revolution in Poland – challenges with replication of the US success. Proceedings of the 2015 International Conference on Energy, Power and Environment, 2015.
  • [9] Poprawa P., Hendel J., Sikora A., Kuczyński S.: Geological Setting and Gas/Oil Exploration Potential of Poland. International Multidisciplinary Scientific GeoConference: SGEM, vol. 1, 2015, pp. 189–206.
  • [10] Ministry of the Environment, Republic of Poland: 2016, www.mos.gov.pl.
  • [11] Fevang O., Whitson C.H.: Accurate Insitu Compositions in Petroleum Reservoirs. Society of Petroleum Engineers, SPE.
  • [12] Strong J., Thomas F.B., Bennion D.B.: Reservoir fluid sampling and recombination techniques for laboratory experiments. Petroleum Society of CIM, CIM 936-54.
  • [13] Whitson C.H.: Field Development & Technology, Reservoir Technology, Chapter 3: Fluid Sampling & Laboratory Data. Manual PVT Analysis, NORSK HYDRO, 1998.
  • [14] API Recommended Practice for Sampling Petroleum Reservoir Fluids. American Petroleum Institute, 1966.
  • [15] Jędrychowska S.: Możliwości wykorzystania spektroskopii ramanowskiej w branży naftowej. Nafta-Gaz, t. 11, 2012, pp. 842–849.
  • [16] Eichmann S.C., Kiefer J.: Characterization of Fast Gas Analyzer Based on Raman Scattering for the Analysis of Synthesis Gas. Review of Scientific Instruments, vol. 81, 2010, Rev Sci Instrum. 2010 vol. 81, no. 12: 125104, doi:10.1063/1.3521397.
  • [17] Buldakov M.A., Korolev B.V., Matrosov I.I.: Raman gas analyzer for determining the composition of natural gas. Journal of Applied Spectroscopy, vol. 80, no. 1, 2013, pp. 128–132.
  • [18] Kiefer J.: Recent Advances in the Characterization of Gaseous and Liquid Fuels by Vibrational Spectroscopy. Energies, vol. 8, no. 4, 2015, pp. 3165–3197.
  • [19] Kiefer J., Seeger T., Schorsch S., Weikl M.C., Leipertz A.: Design and Characterization of Raman-Scattering-Based Sensor System for Temporally Resolved Gas Analysis and Application in a Gas Turbine Power Plant. Measurement Science and Technology, vol. 19, no. 8, 2008, doi:10.1088/0957-0233/19/8/085408.
  • [20] Eichmann S.C., Kiefer J., Benz J., Kempf T., Leipertz A., Seeger T.: Determination of Gas Composition in a Biogas Plant Using Raman-Based Sensor System. Measurement Science and Technology, vol. 25, no. 7, 2014, iopscience.iop.org.
  • [21] Dubessy J., Caumon M.C., Rull F.: Raman Spectroscopy Applied to Earth Sciences and Cultural Heritage. The Mineralogical Society of Great Britain and Ireland, 2012.
  • [22] Varotsis N., Guieze P.: Reservoir fluid characterisation using gas chromatography-mass spectrometry. Journal of Petroleum Science and Engineering, vol. 15, 1996, pp. 81–89.
  • [23] Włodek T., Kuczyński S., Smulski R., Polański K.: An application of a Raman scattering analyzer for the determination of natural gas composition at a processing plant. AGH Drilling, Oil, Gas, vol. 33, no. 3, 2016, pp. 619–627.
  • [24] Nagy S., Siemek J.: Confined phase envelope of gas-condensate systems in shale rocks. Archives of Mining Sciences, vol. 59(4), 2014, pp. 1005–1022.
  • [25] Kuczyński S.: Analysis of Vapour Liquid Equilibria in Unconventional Rich Liquid Gas Condensate Reservoirs. ACTA Universitatis Cibiniensis, vol. 65, no. 1, 2014, pp. 46–51.
  • [26] Petrov D.V., Matrosov I.I.: Raman Gas Analyzer (RGA): Natural Gas Measurements. Applied Spectroscopy, vol. 70, no. 10, 2016, pp. 1770–1776.
  • [27] Kuczyński S., Włodek T., Dąbrowski K.M., Barbacki J., Polański K.: Determination of natural gas composition and concentration with Raman spectroscopy – high pressure and high temperature measurements. Hydrogeology, Engineering Geology and Geotechnics, Applied and Environmental Geophysics, Oil and Gas Exploration, vol. 3, 2016, pp. 809–816.
  • [28] Peng D.Y., Robinson D.B.: A new two constants equation of state. Industry Engineering Chemistry Fundamentals, 1976, pp. 59–64.
  • [29] Seitz J.C., Pasteris J.D., Chou I.M.: Raman Spectroscopic Characterization of Gas Mixtures. I. Quantitative composition and pressure determination of CH4, N2 and Their Mixtures. American Journal of Science, vol. 296, 1993, pp. 577– 600.
  • [30] Buldakov M.A., Korolkov V.A., Matrosov I.I., Petrov D.V., Tikhomirov A.A., Korolev B.V.: Analyzing Natural Gas by Spontaneous Raman Scattering Spectroscopy. Journal of Optical Technology, vol. 80, no. 7, 2013, pp. 426–430.
  • [31] Buldakov M.A.: Raman Gas-Analyzer for Analyzing Environmental and Technogenic Gas Media. Atmospheric and Oceanic Optics, vol. 25, no. 4, 2012, pp. 298–303.
  • [32] Petrov D.V., Matrosov I.I., Tikhomirov A.A.: High-Sensitivity Spontaneous Raman Spectrometer for Gaseous Media. Journal of Applied Spectroscopy, vol. 82, no. 1, 2015, pp. 120–124.
  • [33] Petrov D.V., Matrosov I.I.: Pressure dependence of the Raman signal intensity in high-pressure gases: Pressure dependence of the Raman signal intensity. Journal of Raman Spectroscopy, 2016.
  • [34] Shang L., Chou I.M, Burruss R.: Raman spectroscopic characterization of CH4 density over a wide range of temperature and pressure. Institute of Geochemistry, vol. 45, no. 8, 2014.
  • [35] Hansen S., Berg R.W., Rolf W., Stenby E.H.: The Application of Raman Spectroscopy for Analysis of Multi-Component Systems. Technical University of Denmark, 2000.
  • [36] Hansen S.B., Berg R.W., Stenby E.H.: High-pressure measuring cell for Raman spectroscopic studies of natural gas. Applied Spectroscopy, vol. 55, 2001, pp. 55–60.
  • [37] Lin F., Sum A.K., Bodnar R.J.: Correlation of methane Raman n1 band position with fluid density and interactions at the molecular level. Journal of Raman Spectroscopy, vol. 38, 2007, pp. 1510–1515.
  • [38] Lin F., Bodnar R.J., Becker S.P.: Experimental determination of the Raman CH4 n1 band position from 1–650 bars and 0.3–22°C: application to fluid inclusion studies. Geochimica et Cosmochimica Acta, vol. 71, no. 15, 2007, pp. 3746–3756.
  • [39] Thieu V., Subramanian S., Colgate S.O., Sloan Jr. E.D., High-pressure optical cell for hydrate measurements using Raman spectroscopy. In: G.D. Holder, P.R. Bishnoi (eds.), Gas Hydrates: Challenges for the Future, Annals of the New York Academy of Sciences, vol. 912, 2000, pp. 983–992.
  • [40] Seitz J.C., Pasteris J.D., Chou I.M.: Raman spectroscopic characterization of gas mixtures. 2. Quantitative composition and pressure determination of the CO2–CH4 system. American Journal of Science, vol. 296, 1996, pp. 577–600.
  • [41] Lu W.J., Chou I.M., Burruss R.C., Song Y.C.: A unified equation for calculating methane vapour pressures in CH4-H2O system with measured Raman shift. Geochimica et Cosmochimica Acta, vol. 71, 2007, pp. 3969–3978
Uwagi
EN
This work was performed with financial support from the National Centre for Research and Development and industrial partners, project no.: BG1/IRES/13. We thank to Michał Łaśko and Jakub Frankiewicz for technical support.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13ff04cf-3479-4016-85ea-924ddaf643b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.