Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work, we modify the dynamics of 3-D four-wing Li chaotic system (Li et al. 2015) by introducing a feedback controller and obtain a new 4-D hyperchaotic four-wing system with complex properties. We show that the new hyperchaotic four-wing system have three saddle-foci balance points, which are unstable. We carry out a detailed bifurcation analysis for the new hyperchaotic four-wing system and show that the hyperchaotic four-wing system has multistability and coexisting attractors. Using integral sliding mode control, we derive new results for the master-slave synchronization of hyperchaotic four-wing systems. Finally, we design an electronic circuit using MultiSim for real implementation of the new hyperchaotic four-wing system.
Czasopismo
Rocznik
Tom
Strony
507--534
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wzory
Twórcy
- School of Electrical and Computing, Vel Tech University, 400 Feet Outer Ring Road, Avadi, Chennai-600092, Tamil Nadu, India
autor
- Non Destructive Testing Laboratory, Automatic Department, Jijel University, BP 98, 18000, Jijel, Algeria
autor
- Department of Mechanical Engineering, Universitas Muhammadiyah Tasikmalaya, Tasikmalaya 46196, West Java, Indonesia
autor
- Department of Natural and Applied Sciences, Community College of Buraydah, Qassim University, Buraydah, 52571, Saudi Arabia
- Nile Higher Institute for Commercial Science and Computer Technology, Mansoura, 35511, Egypt
Bibliografia
- [1] X. Peng, Y. Zeng, and Q. Xie: Dynamics analysis of a 5-dimensional hyper-chaotic system with conservative flows under perturbation. Chinese Physics B, 30(10) (2021), Article ID 100502. DOI: 10.1088/1674-1056/abea9a.
- [2] F. Djimasra, J.D.D. Nkapkop, N. Tsafack, J. Kengne, J.Y. Effa, A. Boukabou, and L. Bitjoka: Robust cryptosystem using a new hyperchaotic oscillator with stricking dynamic properties. Multimedia Tools and Applications, 80(16) (2021), 25121-25137. DOI: 10.1007/s11042-021-10734-1.
- [3] J. Petrzela: Hyperchaotic self-oscillations of two-stage class C amplifier with generalized transistors. IEEE Access, 9 (2021), 62182-62194. DOI: 10.1109/ACCESS.2021.3074367.
- [4] N.J. McCullen and P. Moresco: Route to hyperchaos in a system of coupled oscillators with multistability. Physical Review E, 83(4) (2011), Article ID 046212. DOI: 10.1103/PhysRevE.83.046212.
- [5] H.A. Abdulkadhim and J.N. Shehab: Audio steganography based on least significant bits algorithm with 4D grid multi-wing hyper-chaotic system. Interational Journal of Electrical and Computer Engineering, 12(1) (2022), 320-330. DOI: 10.11591/ijece.v12i1.pp320-330.
- [6] M.D. Gupta and R.K. Chauhan: Secure image encryption scheme using 4D-Hyperchaotic systems based reconfigurable pseudo-random number generator and S-Box. Integration, 81 (2021), 137-159. DOI: 10.1016/j.vlsi.2021.07.002.
- [7] Y.Y. Bian and W.X. Yu: A secure communication method based on 6-D hyperchaos and circuit implementation. Telecommunication Systems, 77(4) (2021), 731-751. DOI: 10.1007/s11235-021-00790-1.
- [8] M. Zhang, X. Tong, Z. Wang, and P. Chen: Joint lossless image compression and encryption scheme based on calic and hyperchaotic system. Entropy, 23 (8) (2021), Article ID 1096. DOI: 10.3390/e23081096.
- [9] A. Khan and S. Kumar: Study of chaos in satellite system. Pramana - Journal of Physics, 90(1) (2018), Article ID 0013. DOI: 10.1007/s12043-017-1502-0.
- [10] C. Li, I. Pehlivan, J.C. Sprott, and A. Akgul: A novel four-wing strange attractor born in bistability. IEICE Electronics Express, 12(4) (2015), Article ID 20141116. DOI: 10.1587/elex.12.20141116.
- [11] Y. Deng and Y. Li: Bifurcation and bursting oscillations in 2D non-autonomous discrete memristor-based hyperchaotic map. Chaos, Solitons and Fractals, 150 (2021), Article ID 111064. DOI: 10.1016/j.chaos.2021.111064.
- [12] C. Dong, K. Sun, S. He and H. Wang: A hyperchaotic cycloid map with attractor topology sensitive to system parameters. Chaos, 31 (8) (2021), Article ID 083132. DOI: 10.1063/5.0061519.
- [13] H. Ming, H. Hu, and J. Zheng: Analysis of a new coupled hyperchaotic model and its topological types. Nonlinear Dynamics, 105 (2) (2021), 1937-1952. DOI: 10.1007/s11071-021-06692-w.
- [14] S. Vaidyanathan, S. He, and A. Sambas: A new multistable double-scroll 4-D hyperchaotic system with no equilibrium point, its bifurcation analysis, synchronization and circuit design. Archives of Control Sciences, 31(1) (2021), 99-128. DOI: 10.24425/acs.2021.136882.
- [15] P.C. Rech: Hyperchaos and multistability in a four-dimensional financial mathematical model. Journal of Applied Nonlinear Dynamics, 10(2) (2021), 211-218. DOI: 10.5890/JAND.2021.06.002.
- [16] S. Vaidyanathan, I.M. Moroz, and A. Sambas: A new 4-D hyperchaotic system with no equilibrium, its multistability, offset boosting and circuit simulation. Archives of Control Sciences, 30(3) (2020), 575-597. DOI: 10.24425/acs.2020.134678.
- [17] L. Merah, A. Adnane, A. Ali-Pacha, S. Ramdani, and N. Hadj-Said: Real-time implementation of a chaos based cryptosystem on low-cost hardware. Iranian Journal of Science and Technology - Transactions of Electrical Engineering, 45(4) (2021), 1127-1150. DOI: 10.1007/S40998-021-00433-W.
- [18] M. Boumaraf and F. Merazka: Secure speech coding communication using hyperchaotic key generators for AMR-WB codec. Multimedia Systems, 27(2) (2021), 247-269. DOI: 10.1007/s00530-020-00738-6.
- [19] E. Zambrano-Serrano, J.M. Munoz-Pacheco, F.E. Serrano, L.A. Sanchez-Gaspariano, and C. Volos: Experimental verification of the multi-scroll chaotic attractors synchronization in PWL arbitrary-order systems using direct coupling and passivity-based control. Integration, 81 (2021), 56-70. DOI: 10.1016/j.vlsi.2021.05.012.
- [20] S.L. Yan: Synchronizations of quasi-period and hyperchaos in injected two-section semiconductor lasers. Journal of Optical Communications, 34(1) (2013), 9-14. DOI: 10.1515/joc-2013-0003.
- [21] R.J. Yahya and N.H. Abbas: Optimal integral sliding mode controller controller design for 2-RLFJ manipulator based on hybrid optimization algorithm. International Journal of Electrical and Computer Engineering, 12(1) (2022), 293-302. DOI: 10.11591/ijece.v12i1.pp293-302.
- [22] G.P. Incremona, L. Mirkin, and P. Colaneri: Integral sliding-mode control with internal model: A separation. IEEE Control Systems Letters, 6 (2022), 446-451. DOI: 10.1109/LCSYS.2021.3079187.
- [23] G. Xu, S. Zhao, and Y. Cheng: Chaotic synchronization based on improved global nonlinear integral sliding mode control. Computers and Electrical Engineering, 96 (2021), Article ID 107497. DOI: 10.1016/j.compeleceng.2021.107497.
- [24] S. Kumar, C. Singh, S.N. Prasad, C. Shekhar, and R. Aggarwal: Synchronization of fractional order Rabinovich-Fabrikant systems using sliding mode control techniques. Archives of Control Sciences, 29(2), (2019), 307-322. DOI: 10.24425/acs.2019.129384.
- [25] A. Ouannas, A.T. Azar, and S. Vaidyanathan: A robust method for new fractional hybrid chaos synchronization. Mathematical Methods in the Applied Sciences, 40(5), (2017), 1804-1812. DOI: 10.1002/mma.4099.
- [26] S. Vaidyanathan: A ten-term novel 4-D hyperchaotic system with three quadratic nonlinearities and its control. International Journal of Control Theory and Applications, 6(2), (2013), 97-109.
- [27] A. Sambas, S. Vaidyanathan, X. Zhang, I. Koyuncu, T. Bonny, M. Tuna, M. Alcin, S. Zhang, I.M. Sulaiman, A.M. Awwal, and P. Kumam: A novel 3D chaotic system with line equilibrium: Multistability, integral sliding mode control, electronic circuit, FPGA implementation and its image encryption. IEEE Access, 10 (2022), 68057-68074. DOI: 10.1109/AC-CESS.2022.3181424.
- [28] S. Vaidyanathan, K. Benkouider, and A. Sambas: A new multistable jerk chaotic system, its bifurcation analysis, backstepping control-based synchronization design and circuit simulation. Archives of Control Sciences, 32(1), (2022), 123-152. DOI: 10.24425/acs.2022.140868.
- [29] X. Zhou, C. Li, X. Lu, T. Lei, and Y. Zhao: A 2D hyperchaotic map: Amplitude control, coexisting symmetrical attractors and circuit implementation. Symmetry, 13 (6) (2021), Article ID 1047. DOI: 10.3390/sym13061047.
- [30] J. Luo, S. Qu, Y. Chen, X. Chen, and Z. Xiong: Synchronization, circuit and secure communication implementation of a memristor-based hyperchaotic system using single input controller. Chinese Journal of Physics, 71 (2021), 403-417. DOI: 10.1016/j.cjph.2021.03.009.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13feee3c-f7c5-4fbf-957e-7678b8547834