PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonlinear free vibration of functionally graded graphene nanoplatelet-reinforced composite rectangular plates using the full layerwise finite element method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This investigation is the first effort to study the nonlinear free vibration response of functionally graded (FG) graphene nanoplatelet (GPL)-reinforced composite rectangular plates using the full layerwise (LW) finite element method. The innovation of this article, which has not been investigated thus far, is a nonlinear vibration analysis with equivalent precision to three-dimensional (3D) elasticity while benefiting from decreased computational cost, ease of mesh adjustment, and faster achievement of the element stiffness matrix due to preserving the 2D structure. The modified Halpin–Tsai model and the rule of mixtures are employed to specify the effective material properties for composite plates with three different arrangements of GPLs. After confirming the results and formulation, an exhaustive parametric study is executed to examine how various characteristics of GPLs and the plate affect the nonlinear-to-linear frequency (NTL) ratio of the FG GPL-reinforced composite plate. The noteworthy finding is that inserting a small percentage of GPLs in pure epoxy changes its NTL ratio significantly. The effect of the GPL dimension on the NTL ratio is insignificant when the thickness-to-length ratio of GPLs is smaller than 10-3.
Rocznik
Strony
225--252
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran
  • Department of Mechanical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
  • Department of Mechanical Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran
Bibliografia
  • 1. M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu, N. Koratkar, Enhanced mechanical properties of nanocomposites at low graphene content, ACS Nano, 3, 12, 3884–3890, 2009. doi: 10.1021/nn9010472.
  • 2. M. Fang, K. Wang, H. Lu, Y. Yang, S. Nutt, Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites, Journal of Materials Chemistry, 19, 7098–7105, 2009, doi: 10.1039/b908220d.
  • 3. J. Liu, H. Yan, K. Jiang, Mechanical properties of graphene platelet-reinforced alumina ceramic composites, Ceramics International, 39, 6215–6221, 2013, doi: 10.1016/j.ceramint.2013.01.041.
  • 4. J.A. King, D.R. Klimek, I. Miskioglu, G.M. Odegard, Mechanical properties of graphene nanoplatelet/epoxy composites, Journal of Applied Polymer Science, 128, 4217–4223, 2013, doi: 10.1002/app.38645.
  • 5. F. Wang, L.T. Drzal, Y. Qin, Z. Huang, Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites, Journal of Material Sciences, 50, 1082–1093, 2015, doi: 10.1007/s10853-014-8665-6.
  • 6. H.-S. Shen, Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments, Composite Structures, 91, 9–19, 2009, doi: 10.1016/j.compstruct.2009.04.026.
  • 7. P. Kumar, J. Srinivas, Vibration, buckling and bending behavior of functionally graded multi-walled carbon nanotube reinforced polymer composite plates using the layer wise formulation, Composite Structures, 177, 158–170, 2017, doi: 10.1016/j.compstruct.2017.06.055.
  • 8. S. Jedari Salami, Free vibration analysis of sandwich beams with carbon nanotube reinforced face sheets based on extended high-order sandwich panel theory, Journal of Sandwich Structures & Materials, 20, 2, 219–248, 2018, doi: 10.1177/1099636216649788.
  • 9. R. Gholami, R. Ansari, Geometrically nonlinear resonance of higher-order shear deformable functionally graded carbon-nanotube-reinforced composite annular sector plates excited by harmonic transverse loading, The European Physical Journal Plus, 133, 2, 2018, doi: 10.1140/epjp/i2018-11874-6.
  • 10. M. Rout, A. Karmakar, Free vibration of rotating pretwisted CNTs-reinforced shallow shells in thermal environment, Mechanics of Advanced Materials and Structures, 26, 1808–1820, 2019, doi: 10.1080/15376494.2018.1452317.
  • 11. M. di Sciuva, M. Sorrenti, Bending, free vibration and buckling of functionally graded carbon nanotube-reinforced sandwich plates, using the extended Refined Zigzag Theory, Composite Structures, 227, 111324, 2019, doi: 10.1016/j.compstruct.2019.111324.
  • 12. M. Hosseini, M. Sadeghi-Goughari, S.A. Atashipour, M. Eftekhari, Vibration analysis of single-walled carbon nanotubes conveying nanoflow embedded in a viscoelastic medium using modified nonlocal beam model, Archives of Mechanics, 66, 4, 217–244, 2014.
  • 13. M. Terrones, H. Terrones, The carbon nanocosmos: novel materials for the twentyfirst century, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 361, 2789–2806, doi: 10.1098/rsta.2003.1262.
  • 14. S.-Y. Fu, X.-Q. Feng, B. Lauke, Y.-W. Mai, Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites, Composites Part B: Engineering, 39, 6, 933–961, 2008, doi: 10.1016/j.compositesb.2008.01.002.
  • 15. M. Song, S. Kitipornchai, J. Yang, Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets, Composite Structures, 159, 579–588, 2017, doi: 10.1016/j.compstruct.2016.09.070.
  • 16. R. Muni Rami Reddy, W. Karunasena, W. Lokuge, Free vibration of functionally graded-GPL reinforced composite plates with different boundary conditions, Aerospace Science and Technology, 78, 147–156, 2018, doi: 10.1016/j.ast.2018.04.019.
  • 17. C.H. Thai, A.J.M. Ferreira, T.D. Tran, P. Phung-Van, Free vibration, buckling and bending analyses of multilayer functionally graded graphene nanoplatelets reinforced composite plates using the NURBS formulation, Composite Structures, 220, 749–759, 2019, doi: 10.1016/j.compstruct.2019.03.100.
  • 18. C. Feng, S. Kitipornchai, J. Yang, Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs), Engineering Structures, 140, 110–119, 2017, doi: 10.1016/j.engstruct.2017.02.052.
  • 19. R. Gholami, R. Ansari, Nonlinear harmonically excited vibration of third-order shear deformable functionally graded graphene platelet-reinforced composite rectangular plates, Engineering Structures, 156, 197–209, 2018, doi: 10.1016/j.engstruct.2017.11.019.
  • 20. R. Gholami, R. Ansari, Nonlinear stability and vibration of pre/post-buckled multilayer FG-GPLRPC rectangular plates, Applied Mathematical Modelling, 65, 627–660, 2019, doi: 10.1016/j.apm.2018.08.038.
  • 21. R. Gholami, R. Ansari, On the nonlinear vibrations of polymer nanocomposite rectangular plates reinforced by graphene nanoplatelets: A unified higher-order shear deformable model, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 43, 603–620, 2019, doi: 10.1007/s40997-018-0182-9.
  • 22. M.Y. Abdollahzadeh Jamalabadi, P. Borji, M. Habibi, R. Pelalak, Nonlinear vibration analysis of functionally graded GPL-RC conical panels resting on elastic medium, Thin-Walled Structures, 160, 107370, 2021, doi: 10.1016/j.tws.2020.107370.
  • 23. T. Farsadi, D. Asadi, H. Kurtaran, Frequency study of functionally graded multilayer graphene platelet-reinforced polymer cylindrical panels, Archives of Mechanics, 73, 5-6, 471–498, 2021, doi: 10.24423/aom.3761.
  • 24. M.W. Teng, Y.Q. Wang, Nonlinear forced vibration of simply supported functionally graded porous nanocomposite thin plates reinforced with graphene platelets, Thin-Walled Structures, 164, 107799, 2021, doi: 10.1016/j.tws.2021.107799.
  • 25. J.N. Reddy, A generalization of two-dimensional theories of laminated composite plates, Communications in Applied Numerical Methods, 3, 173–180, 1987, doi: 10.1002/cnm.1630030303.
  • 26. A. Nosier, R.K. Kapania, J.N. Reddy, Free vibration analysis of laminated plates using a layerwise theory, American Institute of Aeronautics and Astronautics Journal (AIAA Journal), 31, 12, 2335–2346, 1993, doi: 10.2514/3.11933.
  • 27. M. Shakeri, R. Mirzaeifar, Static and dynamic analysis of thick functionally graded plates with piezoelectric layers using layerwise finite element model, Mechanics of Advanced Materials and Structures, 16, 561–575, 2019, doi: 10.1080/15376490802625514.
  • 28. S. Nikbakht, S. Jedari Salami, M. Shakeri, Three dimensional analysis of functionally graded plates up to yielding, using full layer-wise finite element method, Composite Structures, 182, 99–115, 2017, doi: 10.1016/j.compstruct.2017.09.022.
  • 29. M. Marjanovic, N. Markovic, E. Damnjanovic, R. Cvetkovic, Three-dimensional stress analysis and design of cross-laminated timber panels using full-layerwisetheory-based finite element method, Thin-Walled Structures, 157, 107156, 2020, doi: 10.1016/j.tws.2020.107156.
  • 30. M.S. Tayebi, S. Jedari Salami, M. Tavakolian, Free vibration analysis of functionally graded composite rectangular plates reinforced with graphene nanoplatelets (GPLs) using full layerwise finite element method, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2023, 095440622311662, doi: 10.1177/09544062231166245.
  • 31. J. Yang, H. Wu, S. Kitipornchai, Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams, Composite Structures, 161, 111–118, 2017, doi: 10.1016/j.compstruct.2016.11.048.
  • 32. P.K. Mallick, Fiber-Reinforced Composites, CRC Press, 2007, doi: 10.1201/9781420005981.
  • 33. J.C. Halpin, J.L. Kardos, The Halpin–Tsai equations: A review, Polymer Engineering and Science, 16, 5, 344–352, 1976, doi: 10.1002/pen.760160512.
  • 34. R. Guzmán de Villoria, A. Miravete, Mechanical model to evaluate the effect of the dispersion in nanocomposites, Acta Materialia, 55, 9, 3025–3031, 2007, doi: 10.1016/j.actamat.2007.01.007.
  • 35. H. Rostami, S. Jedari Salami, Large amplitude free vibration of sandwich beams with flexible core and FG Graphene Platelet Reinforced Composite (FG-GPLRC) face sheets based on extended higher-order sandwich panel theory, Thin-Walled Structures, 180, 109999, 2022, doi: 10.1016/j.tws.2022.109999.
  • 36. H.R. Mojiri, S.J. Salami, Free vibration and dynamic transient response of functionally graded composite beams reinforced with graphene nanoplatelets (GPLs) resting on elastic foundation in thermal environment, Mechanics Based Design of Structures and Machines, 50, 1872–1892, 2022, doi: 10.1080/15397734.2020.1766492.
  • 37. J.N. Reddy, Mechanics of Laminated Composite Plates and Shells, CRC Press, 2003, doi: 10.1201/b12409.
  • 38. R.M. Jones, Mechanics of Composite Materials, CRC Press, 2018, doi: 10.1201/9781498711067.
  • 39. G. Prathap, T.K. Varadan, The large amplitude vibration of hinged beams, Computers and Structures, 9, 219–222, 1978, doi: 10.1016/0045-7949(78)90141-4.
  • 40. A. Yasmin, I.M. Daniel, Mechanical and thermal properties of graphite platelet/epoxycomposites, Polymer, 45, 24, 8211–8219, 2004, doi: 10.1016/j.polymer.2004.09.054.
  • 41. F. Liu, P. Ming, J. Li, Ab initio calculation of ideal strength and phonon instability of graphene under tension, Physical Review B, 76, 064120, 2007, doi: 10.1103/Phys-RevB.76.064120.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13fe0d92-711e-44ee-8e1d-7b4b79ff0adf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.