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This investigation is the first effort to study the nonlinear free vibration
response of functionally graded (FG) graphene nanoplatelet (GPL)-reinforced com-
posite rectangular plates using the full layerwise (LW) finite element method. The
innovation of this article, which has not been investigated thus far, is a nonlinear vi-
bration analysis with equivalent precision to three-dimensional (3D) elasticity while
benefiting from decreased computational cost, ease of mesh adjustment, and faster
achievement of the element stiffness matrix due to preserving the 2D structure. The
modified Halpin–Tsai model and the rule of mixtures are employed to specify the ef-
fective material properties for composite plates with three different arrangements of
GPLs. After confirming the results and formulation, an exhaustive parametric study
is executed to examine how various characteristics of GPLs and the plate affect the
nonlinear-to-linear frequency (NTL) ratio of the FG GPL-reinforced composite plate.
The noteworthy finding is that inserting a small percentage of GPLs in pure epoxy
changes its NTL ratio significantly. The effect of the GPL dimension on the NTL
ratio is insignificant when the thickness-to-length ratio of GPLs is smaller than 10−3.
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1. Introduction:

Graphene nanoplatelets (GPLs) have attracted substantial consideration as
reinforcement in the recent decade by giving nanocomposites extraordinary me-
chanical, thermal, and electrical characteristics at low density. Some researchers
experimentally investigated the mechanical performance of GPL-embedded com-
posites and found that mechanical properties of the structure (e.g., the modulus
of elasticity, fracture toughness, tensile strength, and flexural strength) are sig-
nificantly improved by incorporating GPLs into the matrix [1–5]. Consequently,
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GPL-reinforced structures have been extensively employed in various fields in-
volving automotive, aerospace, electronics, biomedical, and civil engineering.

The concept of functionally graded (FG) materials was introduced to carbon-
based nanocomposite structures in 2009 [6]. It was found that a nonuniform gra-
dient of carbon nanotubes (CNTs) can result in a further enhancement of the
mechanical characteristics of the plate. Afterward, considerable investigations
focused on the vibration conducts of FG CNT-reinforced composites [7–12]. The
comparison between composite structures filled with GPL and CNT has shown
that using GPLs as reinforcement leads to lower fabrication costs, superior dis-
persion of fillers in the polymer matrix, extremely better mechanical proper-
ties, and stronger adhesion between the polymer matrix and nanofillers [13, 14].
Thus, the study on the vibration conducts of FG GPL-reinforced nanocomposite
structures has recently turned out to be an attractive research field. For instance,
Song et al. [15] studied the vibration characteristics of FG GPL-reinforced com-
posite plates according to the first-order shear deformation theory (FSDT) and
the Navier solution. Similarly, Muni Rami Reddy et al. [16] employed the FSDT
based on the finite element method (FEM) to explore the vibration conducts of
FG GPL-reinforced thin and thick rectangular plates with various boundary
condition (BC) combinations. Thai et al. [17] also discussed the free vibration
conducts of FG GPL-reinforced composite plates using a nonuniform rational
B-spline formulation predicated on the four-variable refined plate theory.

The above-mentioned works principally concentrated on the linear vibrations
of FG GPL-reinforced composite structures. In actual engineering and industrial
applications, these structures may be exposed to large deformations; therefore,
investigating their nonlinear vibration conduct is necessary. Feng et al. [18] pre-
sented the nonlinear free vibration analysis of FG GPL-reinforced Timoshenko
beams by means of the Ritz method. Gholami and Ansari [19–21] evaluated
the nonlinear harmonically excited, forced, and free vibration characteristics of
FG GPL-reinforced composite plates using the third-order shear deformation
theory (TSDT). Likewise, Abdollahzadeh Jamalabadi et al. [22] obtained
nonlinear free vibration responses of FG panels reinforced by GPLs using FSDT.
Farsadi et al. [23] studied nonlinear natural frequencies of curved cylindrical
panels made of FG GPL-reinforced polymer composites. Teng and Wang [24]
investigated the nonlinear forced vibration of thin FG GPL-reinforced porous
rectangular plates.

The above-reviewed literature indicates that most prior works investigat-
ing the nonlinear vibration characteristics of the FG GPL-reinforced compos-
ites are limited to equivalent single-layer (ESL) theories. These theories sim-
plify the three-dimensional (3D) problem by reducing it to a 2D one, thus re-
placing the multilayer plate with an equivalent single layer. They assume the
displacement field to be a C1-continuous function through the thickness, lead-
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ing to the ignorance of strain discontinuities and thus discontinuity of trans-
verse stresses at the interface of dissimilar material layers (IDMLs). The error
caused by the discontinuity of these stresses can be insignificant while analyz-
ing the general behavior of plates (specifically thin plates). Nonetheless, ESL
theories can produce incorrect results for all stresses for thick and composite
plates (specifically at the ply level). To deal with this deficiency, Reddy [25]
presented the layerwise (LW) theory in which the displacement field is assumed
to be a C0-continuous function through the thickness. Therefore, the continuity
of transverse strains is not required, enabling the transverse stresses to be con-
tinuous at the IDMLs. However, few investigations have been directed toward
the LW theory [26–30].

The principal novelty of the present article is to determine the 3D stress
field through the thickness of the FG GPL-reinforced nanocomposite plate by
employing the full LW theory and to accurately obtain its nonlinear free vi-
bration response accordingly. In addition, using the FEM facilitates providing
nonlinear vibration responses for various BC combinations of the plate. GPLs
are assumed to be distributed according to three patterns over the thickness. The
effective material properties of the plate are computed by applying the modified
Halpin–Tsai model and the rule of mixtures. The governing equations of motion
are derived considering the von Karman large deflection assumption and em-
ploying Hamilton’s principle. Finally, the influence of some significant factors,
including the gradient pattern, concentration, and geometry of GPLs, as well as
the plate’s thickness and BCs, on the nonlinear free vibration response of FG
GPL-reinforced rectangular composite plates, is discussed through a thorough
numerical study.

2. Theoretical formulatio

An FG GPL-reinforced nanocomposite plate is illustrated in Fig. 1, in which
a, b, and h are the plate’s length, width, and thickness, respectively. The plate
is composed of NL plies with identical thicknesses of ∆h = h/NL.

Each ply is presumed to be isotropic homogeneous owing to the uniform
dispersion of GPLs in the polymer matrix. Simultaneously, the GPL’ weight
fraction changes from ply to ply over the thickness direction based on one of
the three specified patterns (Fig. 2), where the darker shade indicates a greater
concentration of GPLs. The uniformly distributed (UD) pattern is a specific case
where the weight fraction of GPLs is equal in all plate plies, forming an isotropic
homogeneous plate. Their weight fraction rises and reduces from the upper and
lower plies to the central plies for the symmetrical FG-O and FG-X patterns,
respectively. Consequently the central plies of FG-O and the upper and lower
plies of FG-X have the highest GPLs concentration.
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Fig. 1. Schematic of the FG GPL-reinforced nanocomposite rectangular plate.

Fig. 2. Three nanocomposite plates with various GPL gradient patterns.

Signifying the volume fraction of GPLs distributed in the whole plate
by VGPL, the volume fraction of GPLs in the l-th ply under the three GPL
gradient patterns can be computed as follows [31]:

UD pattern:

(2.1) V
(l)

GPL = VGPL,

FG-O pattern:

(2.2) V
(l)

GPL = 2VGPL(1− |2l −NL − 1|/NL),

FG-X pattern:

(2.3) V
(l)

GPL = 2VGPL|2l −NL − 1|/NL,

where l = 1, 2, . . . , NL, and VGPL is expressed by [31],

(2.4) VGPL =
WGPL

WGPL + (ρGPL/ρM )(1−WGPL)
,
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whereWGPL is the total weight fraction of GPLs distributed in the plate. Further-
more, ρGPL and ρM are the GPL and epoxy matrix mass densities, respectively.

This research develops the LW FEM for the nonlinear vibration examination
of FG GPL-reinforced rectangular nanocomposite plates. Regarding the results’
accuracy, this method is equivalent to the 3D FEM, offering the advantage of
a smaller input data volume and less computation time owing to a lower degree
of freedom. The LW finite element model is constructed by combining a 1D
finite element (through the thickness) with a 2D finite element (in-plane). In this
regard, the initial step includes assembling one element through the thickness
to create an LW element. The next step is assembling LW elements within the
(x− y)-plane, enabling the calculation of the total stiffness matrix.

2.1. Material properties

The effective Young modulus of the l-th ply is approximated by the modified
Halpin–Tsai model as [32–35]

(2.5) E
(l)
C =

[
3

8

(
1 + ξLηLV

(l)
GPL

1− ηLV (l)
GPL

)
+

5

8

(
1 + ξW ηWV

(l)
GPL

1− ηWV (l)
GPL

)]
EM ,

where the GPLs’ geometric parameters (ξL and ξW ) are defined as:

ξL = 2/

(
hGPL

aGPL

)
,(2.6)

ξW = 2/

(
hGPL

bGPL

)
(2.7)

and

ηL =
(EGPL/EM )− 1

(EGPL/EM ) + ξL
,(2.8)

ηW =
(EGPL/EM )− 1

(EGPL/EM ) + ξW
.(2.9)

EM and EGPL indicate Young’s modulus of epoxy and GPLs, respectively. More-
over, hGPL, aGPL, and bGPL refer to the average thickness, length, and width of
GPLs, respectively.

According to the rule of mixtures, the effective Poisson ratio νC and mass
density ρC of the l-th ply can be estimated as [36]:

ν
(l
C) = νGPLV

(l)
GPL + νM (1− V (l)

GPL),(2.10)

ρ
(l)
C = ρGPLV

(l)
GPL + ρM (1− V (l)

GPL),(2.11)

where νGPL and νM denote Poisson’s ratios of GPL and epoxy, respectively.
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2.2. Governing equation

The rectangular plate is assumed to be divided into N layers of equal depth
to apply the LW theory (Fig. 3).

Fig. 3. A rectangular plate divided into N equal depth layers; n is the number of planes
produced by the division of the plate (n = N + 1).

The displacement components of all points placed on the i-th plane in the
x, y, and z direction are signified by U i, V i, and W i, respectively; according to
the LW theory, the displacement components of the plateat time t in the x, y,
and z directions are described as follows [37]:

(2.12)

u(x, y, z, t) =

n∑
i=1

U i(x, y, t)φi(z),

v(x, y, z, t) =

n∑
i=1

V i(x, y, t)φi(z),

w(x, y, z, t) =

n∑
i=1

W i(x, y, t)φi(z),

where φi(z) is a linear Lagrangian interpolation function that exerts 1D finite
element through the thickness, defined as [26]:

(2.13) φi(z) =



0 z ≤ zi−1,

ψi1 =
(z − zi−1)

(zi − zi−1)
zi−1 ≤ z ≤ zi,

ψi2 =
(zi+1 − z)
(zi+1 − zi)

zi ≤ z ≤ zi+1,

0 z ≥ zi+1.
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Substituting Eq. (2.12) into von Karman nonlinear strain-displacement rela-
tions [37] results in:

(2.14)

εxx =

n∑
i=1

∂U i

∂x
φi +

1

2

( n∑
i=1

∂W i

∂x
φi
)( n∑

j=1

∂W j

∂x
φj
)
,

εyy =
n∑
i=1

∂V i

∂y
φi +

1

2

( n∑
i=1

∂W i

∂y
φi
)( n∑

j=1

∂W j

∂y
φj
)
,

εzz =
n∑
i=1

W idφ
i

dz
,

γyz =

n∑
i=1

∂W i

∂y
φi +

n∑
i=1

V idφ
i

dz
,

γxz =
n∑
i=1

∂W i

∂x
φi +

n∑
i=1

U i
dφi

∂z
,

γxy =
n∑
i=1

∂U i

∂y
φi +

n∑
i=1

∂V i

∂x
φi +

( n∑
i=1

∂W i

∂x
φi
)( n∑

j=1

∂W j

∂y
φj
)
.

The 3D constitutive relations are employed to obtain the stresses in the k-th
layer as [38]:

(2.15)



σxx

σyy

σzz

σyz

σxz

σxy



(k)

=



Q11 Q12 Q13 0 0 0

Q12 Q22 Q23 0 0 0

Q13 Q23 Q33 0 0 0

0 0 0 Q44 0 0

0 0 0 0 Q55 0

0 0 0 0 0 Q66



(k)

εxx

εyy

εzz

γyz

γxz

γxy



(k)

,

where Q(k)
αβ are the material stiffnesses of the k-th layer, calculated as:

(2.16)

Q
(k)
11 = Q

(k)
22 = Q

(k)
33 =

E
(k)
C

1− ν2
C

,

Q
(k)
12 = Q

(k)
13 = Q

(k)
23 =

νCE
(k)
C

1− ν2
C

,

Q
(k)
44 = Q

(k)
55 = Q

(k)
66 =

E
(k)
C

2(1 + νC)
.
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2.3. Equation of motion

The dynamic equations of the plate affected by the free vibration regime can
be acquired from the following statement of Hamilton’s principle [37]:

(2.17)
T∫

0

(δUtotal − δTtotal) dt = 0,

where Utotal and Ttotal refer to total strain and kinetic energy, respectively, and
δ is the variational symbol that turns them into virtual parameters.

The strain energy for an LW element is considered as [37]:

(2.18) U =
1

2

∫
A

[ h/2∫
−h/2

(σxxεxxσyyεyy+σzzεzz+τyzγyz+τxzγxz+τxyγxy) dz

]
dx dy

=
1

2

∫
A

{ n∑
i=1

[
N i
xx

∂U i

∂x
+N i

yy

∂V i

∂y
+N i

xy

(
∂U i

∂y
+
∂V i

∂x

)

+ Q̄ix
∂W i

∂x
+Q̄iy

∂W i

∂y
+QixU

i+QiyV
i+QizW

i

]
+

1

2

n∑
i,j=1

(
N̄ ij
xx

∂W j

∂x

∂W i

∂x
+N̄ ij

yy

∂W j

∂y

∂W i

∂y
+2N̄ ij

xy

∂W j

∂x

∂W i

∂y

)}
dx dy,

where N , N̄ , Q, and Q̄ refer to stress resultants, described as:

(2.19)

N i
xx, N

i
yy, N

i
xy =

h/2∫
−h/2

(σxx, σyy, τxy)φ
i dz,

N̄ ij
xx, N̄

ij
yy, N̄

ij
xy =

∫ h/2

−h/2
(σxx, σyy, τxy)φ

iφj dz,

Qix, Q
i
y, Q

i
z =

∫ h/2

−h/2
(τxz, τyz, σzz)

dφi

dz
dz,

Q̄ix, Q̄
i
y =

∫
−h/2h/2

(τxz, τyz)φ
i dz.

By substituting Eq. (2.14) into Eq. (2.15) and the subsequent results in
Eq. (2.18), it can be rewritten as:

(2.20) U =
1

2

∫
A

([K1]+[K2]+[K3]+[K3]T+[K4]+[KNL
1 ]+[KNL

2 ]+[KNL
3 ]) dx dy,
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where [K] and [KNL] denote linear and nonlinear stiffness sub-matrices, respec-
tively, defined as:

(2.21)

[K1] =
n∑
i=1

n∑
j=1





∂U i

∂x

∂V i

∂y

W i

∂U i

∂y + ∂V i

∂x



T 
Aij11 A

ij
12 Â

ij
13 0

Aij12 A
ij
22 Â

ij
23 0

Âji13 Â
ji
23 Ā

ij
33 0

0 0 0 Aij66





∂Uj

∂x

∂V j

∂y

W j

∂Uj

∂y + ∂V j

∂x



 ,

[K2] =
n∑
i=1

n∑
j=1


U i

V i


T  Āij55 0

0 Āij44

U j

V j


 ,

[K3] =
n∑
i=1

n∑
j=1


U i

V i


T  B̄ij

55 0

0 B̄ij
44

 ∂W j

∂x

∂W j

∂y


 ,

[K4] =

n∑
i=1

n∑
j=1


 ∂W i

∂x

∂W i

∂y


T Dij

55 0

0 Dij
44

 ∂W j

∂x

∂W j

∂y


 ,

[KNL
1 ] =

n∑
i=1

n∑
j=1

n∑
p=1


∂U i

∂x

∂V i

∂y

∂U i

∂y + ∂V i

∂x


T 

Bijp
11 Bijp

12 0

Bijp
12 Bijp

22 0

0 0 Bijp
66




1
2
∂W j

∂x
∂W p

∂x

1
2
∂W j

∂x
∂W p

∂x

∂W j

∂x
∂W p

∂y

,

[KNL
2 ] =

n∑
i=1

n∑
j=1

n∑
p=1


1
2
∂W i

∂x
∂W j

∂x

1
2
∂W i

∂y
∂W j

∂y

∂W i

∂x
∂W j

∂y


T 

Bpij
11 Bpij

12 B̂pij
13 0

Bpij
12 Bpij

22 B̂pij
23 0

0 0 0 Bpij
66




∂Up

∂x

∂V p

∂y

W p

∂Up

∂y + ∂V p

∂x

 ,

[KNL
3 ] =

n∑
i=1

n∑
j=1

n∑
p=1

n∑
q=1


1
2
∂W i

∂x
∂W j

∂x

1
2
∂W i

∂y
∂W j

∂y

∂W i

∂x
∂W j

∂y


T 

Dijpq
11 Dijpq

12 0

Dijpq
12 Dijpq

22 0

0 0 Dijpq
66




1
2
∂W p

∂x
∂W q

∂x

1
2
∂W p

∂y
∂W q

∂y

∂W p

∂x
∂W q

∂y

,
stiffnesses Aijαβ , Â

ij
αβ , Ā

ij
αβ , B̄

ij
αβ , D

ij
αβ , B

ijp
αβ , B̂

ijp
αβ , and D

ijpq
αβ for the k-th layer are

defined as:

Aijαβ
(k) =

zkt∫
zkb

Q
(k)
αβφ

iφj dz,(2.22)
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Âijαβ
(k) =

zkt∫
zkb

Q
(k)
αβφ

idφ
j

dz
dz,

Āijαβ
(k) =

zkt∫
zkb

Q
(k)
αβ

dφi

dz

dφj

dz
dz,

B̄ij
αβ

(k) =

z∫
zkb

k
tQ

(k)
αβ

dφi

dz
φj dz,

Dij
αβ

(k) =

zkt∫
zkb

Q
(k)
αβφ

iφ
j
dz,(2.22)[cont.]

Bijp
αβ

(k) =

zkt∫
zkb

Q
(k)
αβφ

iφjφp dz,

B̂ijp
αβ

(k) =

zkt∫
zkb

Q
(k)
αβφ

iφj
dφp

dz
dz,

Dijpq
αβ

(k) =

zkt∫
zkb

Q
(k)
αβφ

iφjφpφq dz,

where zkb and zkt indicate the height of the bottom and top surfaces of the k-th
layer, respectively.

The kinetic energy for an LW element is expressed as [37]

(2.23) T =
1

2

∫
A

[ h/2∫
−h/2

ρ(u̇2 + v̇2 + ẇ2) dz

]
dx dy,

where the time derivatives of u, v, andw are demonstrated by u̇, v̇, and ẇ,
respectively, and ρ refers to mass density. The displacement components in
Eq. (2.23) are replaced with those of Eq. (2.12), and the kinetic energy is con-
verted into

(2.24) T =
1

2

∫
A

n∑
i=1

n∑
j=1



U i

V i

W i


T [
Iij
]

Ü j

V̈ j

Ẅ j


 dx dy.
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The inertia matrix [Iij ] for the k-th layer is defined as

(2.25) Iij
(k)

=

zkt∫
zkb

ρ(k)φiφ
j
dz.

The integrals in Eqs. (2.22) and (2.25) are solved using the Gaussian numer-
ical integration method, and the consequent matrices are assembled through the
thickness [37], giving the strain and kinetic energy of an LW element as:

U =
1

2
{dlw}T ([Klw] + [KNL

lw ]){dlw},(2.26)

T =
1

2
{ḋlw}T [Mlw]{ḋlw},(2.27)

where [KNL
lw ], [Klw], [Mlw], {dlw}, and {ḋlw} refer to the nonlinear stiffness ma-

trix, linear stiffness matrix, mass matrix, displacement vector, and time deriva-
tive of the displacement vector relevant to the LW element, respectively. These
matrices and vectors are assembled within the (x−y)-plane [28], and the plate’s
total strain and kinetic energy are achieved as:

Utotal =
1

2
{dtotal}T ([Ktotal] + [KNL

total]){dtotal},(2.28)

Ttotal =
1

2
{ḋtotal}T [Mtotal]{ḋtotal}.(2.29)

By applying Hamilton’s principle, the motion equation of all nodes of the
plate is derived as

(2.30) [Mtotal]{d̈total}+ ([Ktotal] + [KNL
total]){dtotal} = 0.

Based on the iterative displacement control approach [39], the continuum
equivalent of Eq. (2.30) is lowered to a nonlinear eigenvalue problem by noticing
that the maximum amplitude point is of particular attention and determining
the specific characteristics of the time function at this point as

(2.31) {d̈max
total} = −ω2{dmax

total}.

Substituting Eq. (2.31) in Eq. (2.30) yields the following nonlinear eigenvalue
problem

(2.32) ([Ktotal +KNL
total]− ω2[Mtotal]){dmax

total} = 0,

while the obtained equation can be resolved iteratively by considering the dis-
placement vector {dmax

total}, which is mentioned in the next section.
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Firstly, a linear vibration analysis should be performed. In this regard, the
total nonlinear stiffness matrix ([KNL

total]) is presumed to be zero, and the pre-
sumption {d̈total} = −ω2{dtotal} is applied; therefore, Eq. (2.30) transforms into
a standard eigenvalue problem as follows:

(2.33) ([Ktotal]− ω2[Mtotal]){d̄} = 0

linear natural frequencies ω and the related mode shape vectors {d̄} are obtained
after exerting BCs and solving the above-mentioned equation. The succeeding
process should be performed to acquire the nonlinear free vibration response of
the plate:

1) A component of the total displacement vector {dmax
total} is presumed to pos-

sess a specified value. In the present research, w1
max is supposed to be

recognized.
2) The eigenvector related to the linear analysis is normalized and scaled up

concerning the presumed displacement of the previous step.
3) The total nonlinear stiffness matrix [KNL

total] is achieved considering the
displacement vector of step 2.

4) A novel eigenvalue analysis is performed to update the natural frequency
and eigenvector.

5) It is essential to note that the results acquired in the previous step are
solely estimated owing to step (2). The eigenvector developed by step (4)
is scaled up by the presumed displacement w1

max.
6) The process of steps (3)–(5) is iterated to achieve a convergent frequency

parameter, known as the nonlinear frequency, and its associated eigen-
vector.

In the present research, the convergence parameter is presumed as

ωi+1
nl − ω

i
nl

ωi+1
nl

≤ 10−8.

The iterative process can be ceased once this value is achieved.

3. Numerical results and discussion

3.1. Convergence and validation analysis

Firstly, the convergence of the LW FEM is examined, and then a comparative
assessment is performed by comparing the vibration characteristics acquired in
this investigation with those in previous works to validate the veracity of the
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method. A square-shaped FG GPL-reinforced composite plate with a length
of 0.45m is contemplated in this regard. The average dimensions of GPLs are
presumed as:

(3.1) hGPL = 1.5 nm, aGPL = 2.5µm, bGPL = 1.5µm.

The material characteristics of the GPL and polymer matrix are as follows
[1, 40, 41]:

(3.2)
ρGPL = 1060 kg/m3, EGPL = 1.01 TPa, νGPL = 0.186,

ρM = 1200 kg/m3, EM = 3 GPa, νM = 0.34.

The plates with three BC combinations have been investigated in this study.
For example, CCSS represents a plate with clamped, clamped, simply supported,
and simply supported constraints at left, right, upper, and lower edges, respec-
tively.

The linear and nonlinear frequencies of the FG GPL-reinforced composite
plate are signified by ωL and ωNL, respectively; the following dimensionless pa-
rameters are introduced for ease of comparison:

(3.3)

Wmax =
wmax

h
,

{ΩL,ΩNL} = {ωL, ωNL}a

√
ρM (1− νM )

EM
,

Ω̄L = ωLh

√
ρM
EM

.

Figures 4a-c depict the nonlinear-to-linear (NTL) ratio (ΩNL/ΩL) of thin,
moderately thick, and thick SSSS GPL/Epoxy FG square plates, with variations
in the mesh size and the number of layers (NL) to evaluate the convergence of
the current method. The gradient pattern of GPLs is FG-X. In addition, the
dimensionless maximum amplitude (Wmax) is 0.6, and WGPL = 0.3%.

Based on data in Fig. 4 convergent results are achieved when the mesh size is
10× 10, and the number of layers rises to 20. Therefore, considering the volume
of calculations and simplicity of production, the FG GPL-reinforced compos-
ite rectangular plates with a mesh size of 10 × 10 and 20 material layers are
considered in the following numerical analysis.

The first four fundamental frequency parameters (Ω̄L) of the SSSS FG GPL-
reinforced composite plate are computed in this step (Table 1). Then, they are
compared with TSDT-based [7, 21] and FSDT-based [15, 16] results to investi-
gate the validation of the current method.
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(a) h/a = 0.05

(b) h/a = 0.1

(c) h/a = 0.2

Fig. 4. The NTL ratio of GPL/Epoxy FG square plates against the number of layers while
the GPL gradient pattern is FG-X (Wmax = 0.6, WGPL = 0.3).
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Table 1. Fundamental frequency parameters Ω̄L of SSSS GPL/epoxy FG square plates with
various GPL gradient patterns (h/a = 0.1, WGPL = 1%).

Method Mode Pure epoxy UD pattern FG-O pattern FG-X pattern

Present 1 0.0594 0.1236 0.0927 0.1457

[7] (1, 1) 0.0588 0.1223 0.0908 0.1452

[21] 1 0.0580 0.1216 0.0978 0.1369

[15] (1, 1) 0.0584 0.1216 0.1020 0.1378

[16] 1 0.0588 0.1225 0.0912 0.1420

Present 2 0.1426 0.2968 0.2297 0.3317

[7] (2, 1) 0.1409 0.2932 0.2208 0.3410

[21] 2 0.1390 0.2894 0.2368 0.3232

[15] (2, 1) 0.1391 0.2896 0.2456 0.3249

[16] 2 0.1412 0.2941 0.2246 0.3245

Present 3 0.2197 0.4572 0.3627 0.4936

[7] (2, 2) 0.2171 0.4518 0.3443 0.5166

[21] 3 0.2131 0.4433 0.3680 0.4856

[15] (2, 2) 0.2132 0.4436 0.3796 0.4939

[16] 3 0.2176 0.4531 0.3532 0.4810

Present 4 0.2684 0.5584 0.4492 0.5853

[7] (3, 1) 0.2651 0.5519 0.4235 0.6250

[21] 4 0.2580 0.5397 0.4516 0.5848

[15] (3, 1) 0.2595 0.5400 0.4645 0.5984

[16] 4 0.2658 0.5535 0.4378 0.5750

Based on data in Table 1, the relative difference between most of the present
numerical results and those of previous works is less than 6.9%, proving the
reliability of the current approach.

Figures 5a-c display the NTL ratio of GPL/Epoxy FG square plates against
dimensionless maximum amplitude, while the gradient pattern of GPLs is FG-X,
WGPL = 0.3%, h/a = 0.1, and BCs are SSSS, CCSS, and CCCC, respectively.
Furthermore, the present results are compared with the FSDT and TSDT-based
results of Gholami and Ansari [21].

Based on the results, a good consistency is found between the present and
ESL-based results. The NTL ratio exhibits a quasi-parabolic increase with di-
mensionless maximum amplitude. Compared to FSDT and TSDT, the current
method provides a more realistic estimation of linear and nonlinear stiffness
matrices, resulting in higher NTL ratios.
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(a) SSSS

(b) CCSS

(c) CCCC

Fig. 5. The NTL ratio of GPL/Epoxy FG square plates against dimensionless maximum
amplitude while the GPL gradient pattern is FG-X (h/a = 0.1, WGPL = 0.3).
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3.2. Parametric study

This section investigates the effect of various parameters such as the weight
fraction, gradient pattern, and dimensions of GPLs, along with the plate’s BC
and thickness-to-length ratio, on the nonlinear vibration responses of the previ-
ously described FG GPL-reinforced composite plate.

Figures 6a-c depict how the weight fraction of GPLs affects the NTL ratio
against the dimensionless maximum amplitude curves of FG GPL-reinforced
plates with different BCs. The GPLs’ gradient pattern is FG-X, and h/a = 0.1.

The results revealed that increasing the maximum vibration amplitude for all
three contemplated BCs leads to a hardening effect (i.e., an increase in the NTL
ratio). In other words, increasing the maximum vibration amplitude intensifies
geometrical nonlinearity, leading to an increase in nonlinear frequency. It can
also be observed that growing the GPL weight fraction in a fixed dimension-
less maximum amplitude decreases the NTL ratio. This is because increasing
the GPLs’ weight fraction improves the plate’s stiffness, reducing the vibra-
tion domain, and thus increasing linear and nonlinear frequencies. Nevertheless,
the rate of rise in the nonlinear frequency is less than that of the linear fre-
quency, leading to a decrease in the NTL ratio. The effect of adding GPLs on
the NTL ratio is significant for low GPL weight fractions but insignificant for
higher GPL weight fraction values. The reason is that adding GPLs to pure
epoxy significantly increases the plate stiffness and linear frequency. In con-
trast, higher weight fractions of GPLs slightly affect the plate stiffness and linear
frequency.

Figure 7 exhibits the effect of the plate’s edge constraints on the NTL ratio
while the GPLs’ gradient pattern is FG-X, WGPL = 0.2%, and h/a = 0.1.

The results demonstrated that in a fixed maximum vibration amplitude, the
maximum NTL ratio corresponds to the SSSS combination of BC, and the min-
imum one is for the CCCC. More precisely, as BCs are stiffened (i.e., the edge
constraints change from simply supported to clamped), linear and nonlinear fre-
quencies represent an increase. However, the effect of stiffened BCs on the linear
frequency is more significant than that of the nonlinear frequency. Subsequently,
the increase rate of the linear frequency is higher than that of the nonlinear
frequency, causing a decrease in the NTL ratio.

Figures 8a-c illustrate the sensitivity examination of the GPL gradient pat-
tern on the variation of the NTL ratio of FG GPL-reinforced composite plates
with WGPL = 0.2% and h/a = 0.1 for three different BC combinations.

Based on the obtained data, the highest natural frequency and the lowest
NTL ratio correspond to the FG-X gradient pattern. A higher concentration of
GPLs near the upper and lower surfaces of the plate results in the higher stiffness
and lower vibration domain, thus increasing the linear and nonlinear frequencies.
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(a) SSSS

(b) CCSS

(c) CCCC

Fig. 6. The NTL ratio of GPL/Epoxy FG square plates with different weight fractions of
GPL against dimensionless maximum amplitude while the GPL gradient pattern is FG-X

(h/a = 0.1).
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Fig. 7. The NTL ratio of GPL/Epoxy FG square plates with different BCs against
dimensionless maximum amplitude while the GPL gradient pattern is FG-X (WGPL = 0.2%,

h/a = 0.1).

However, this rise in frequency is smaller for nonlinear than linear frequency,
leading to the minimization of the NTL ratio. On the other hand, the highest
NTL ratio pertains to the FG-O pattern, whereas the lowest natural frequency
is for the plate made of pure epoxy. Furthermore, the results revealed that NTL
ratios are equal for the UD pattern and the plate made of pure epoxy because
the rate of increase in linear and nonlinear frequencies are exactly equal when
the material changes from pure epoxy to the UD pattern.

Figures 9a-c display the effect of the thickness-to-length ratio (h/a) on the
NTL ratio, while the GPLs’ gradient pattern is FG-O, WGPL = 0.2%, and BCs
are SSSS, CCSS, and CCCC, respectively.

According to the results, with the growing plate thickness, the NTL ratio in-
creases for fixed values of the dimensionless maximum amplitude. The reason is
that the nonlinearity is intensified with increasing thickness, and consequently,
the rate of increase in the nonlinear frequency exceeds that of the linear fre-
quency.

In the previous figures and table, the GPLs’ dimensions were presumed to be
constant. Figures 10a-c depict the influence of change in GPLs’ average thickness-
to-length ratio (hGPL/aGPL) on the NTL ratio of FG GPL-reinforced composite
plates with three various combinations of BCs, while the gradient pattern of
GPLs is FG-X, the average thickness of GPLs is constant, WGPL = 0.3%, and
h/a = 0.1.
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(a) SSSS

(b) CCSS

(c) CCCC

Fig. 8. The NTL ratio of GPL/Epoxy FG square plates with different GPL gradient
patterns against dimensionless maximum amplitude (WGPL = 0.2%, h/a = 0.1).
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(a) SSSS

(b) CCSS

(c) CCCC

Fig. 9. The NTL ratio of GPL/Epoxy FG square plates with FG-O gradient pattern for
different thickness-to-length ratios against dimensionless maximum amplitude (WGPL = 0.2%).
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(a) SSSS

(b) CCSS

(c) CCCC

Fig. 10. The NTL ratio of GPL/Epoxy FG square plates with various GPL’s
thickness-to-length ratios against dimensionless maximum amplitude (WGPL = 0.3%,

h/a = 0.1).
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(a) SSSS

(b) CCSS

(c) CCCC

Fig. 11. The NTL ratio of GPL/Epoxy FG square plates with different GPL’s
width-to-length ratios against dimensionless maximum amplitude (WGPL = 0.3%).
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The results represented that growing the thickness-to-length ratio of GPLs
leads to a decline in the natural frequency while an increase in the NTL ratio.
This is because by raising the thickness-to-length ratio of GPLs, the load trans-
formation among the matrix and GPLs is weakened, leading to a decrease in the
plate stiffness and a subsequent reduction in linear frequency while a rise in
the NTL ratio.

Figures 11a-c display the influence of change in GPLs’ average width-to-
length ratio (bGPL/aGPL) on the NTL ratio of FG GPL-reinforced composite
plates with three different combinations of BCs, while the gradient pattern of
GPLs is FG-X, the average width of GPLs is constant,WGPL = 0.3%, h/a = 0.1,
and hGPL/bGPL = 0.01.

The results represented that the variation in the average width-to-length
ratio of GPLs has an insignificant effect on the NTL ratio. However, due to the
constant width of GPLs, the surface contact area between GPLs and polymer
matrix is decreased by increasing the width-to-length ratio of GPLs, leading to
weaker load transfer and thus lower structural stiffness and linear and nonlinear
frequencies.

4. Conclusions

The current research explored the nonlinear free vibration conducts of thin,
moderately thick, and thick FG GPL-reinforced composite rectangular plates
with different BC combinations. For the initial time, the nonlinear dynamic
equations of the rectangular plate were established based on Hamilton’s principle
by employing von Karman type of kinematic relations in conjunction with the
full LW theory, which considers all 3D effects. The resultant nonlinear eigenvalue
problem was resolved using a standard iterative process. Finally, after validating
the numerical results and solution procedure, detailed parametric studies were
conducted to discuss the influence of the weight fraction, gradient pattern, and
dimensions of GPLs, as well as the thickness-to-length ratio of the plate, on
the NTL ratio of the FG GPL-reinforced composite plate with different BC
combinations.

The following key points can be extracted from the nonlinear free vibration
analysis:
• The full LW FEM is as precise as the 3D FEM, providing several advan-

tages, such as a reduction in the computational cost, simplicity of change
in mesh, and faster achievement of the element stiffness matrix due to
maintaining the 2D structure.
• The veracity of the LW theory is confirmed such that the maximum relative

difference between the current numerical results and those in the published
papers is less than 6.9%.
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• Although the linear and nonlinear frequencies increase as further GPLs
are added into the polymer matrix, the effect of adding GPLs on the NTL
ratio is more prominent for small weight fractions of GPLs.
• The comparison between the nanocomposite plates with three BC com-

binations proves that the NTL ratio of the plate with the SSSS edges is
maximum, and NTL ratios for the plates with CCSS and CCCC edges are
in the consequent orders.
• The comparison between the three gradient patterns demonstrates that

the NTL ratio of the plate with the FG-O pattern is maximum, and NTL
ratios for UD and FG-X patterns are in the subsequent orders.
• The NTL ratio of the nanocomposite plate increases with an increase in

the thickness-to-length ratio of the plate.
• The NTL ratio of the nanocomposite plate demonstrates an increase with

the rising thickness-to-length ratio of GPLs. Nevertheless, this rise in the
NTL ratio is more significant for the larger thickness-to-length ratios of
GPLs.
• Although the effect of the width-to-length ratio of GPLs on the NTL ra-

tio is negligible, the NTL ratio is higher for larger width-to-length ratios
of GPLs.
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