PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Particulate matter emission reduction from marine diesel engines by electrohydrodynamic methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Particulate matter (PM) and gaseous compounds (SO2, NOx, VOC) emitted by diesel engines causes serious global environmental problems and health impact. Despite numerous evidences about the harmfulness of diesel particles, the PM emission by diesel engines used by ships, cars, agricultural machines, or power generators is still unregulated, and the efficient removal of PM from diesel exhausts is still the major technological challenge. In order to comply with the International Maritime Organization regulation, the NOx emission is reduced by using selected catalytic reactor, and sulphur oxide emission has been reduced by using fuels of low sulphur content. However, both of those measures cannot be used for the reduction of PM emission produced during combustion of marine fuels. The lack of appropriate regulations results from insufficiently developed technology, which could remove those particles from exhaust gases. Conventional scrubbers currently available on the market remove only sulphur oxide with required collection efficiency, but the collection efficiency for PM2.5 is below 50%. The article discusses the technical means used for the removal of PM from marine diesel engines via applying electrohydrodynamic methods, in particular electrostatic agglomeration, as a method of nanoparticles coagulation to larger agglomerates, which could operate in two-stage electrostatic precipitation systems, and electrostatic scrubbers, which remove particles by electrically charged water droplets. The experimental results were obtained for a 2-stroke 73 kW diesel engine fuelled with marine gas oil (MGO). The agglomerator allowed increasing the collection efficiency from diesel exhausts for PM2.5 particles by about 12%, compared to electrostatic precipitator operating without agglomerator, and the total mass collection efficiency was above 74%. The collection efficiency of electrostatic scrubber was higher than 95wt.%. The advantage of using the electrostatic scrubber is that it can also reduce the SO2 emission by more than 90%, when HFO is used.
Twórcy
  • Institute of Fluid Flow Machinery, Polish Academy of Sciences Fiszera Street 14, 80-231 Gdansk, Poland tel.: +48 58 3411271, fax: +48 58 3416144
  • Institute of Fluid Flow Machinery, Polish Academy of Sciences Fiszera Street 14, 80-231 Gdansk, Poland tel.: +48 58 3411271, fax: +48 58 3416144
  • Institute of Fluid Flow Machinery, Polish Academy of Sciences Fiszera Street 14, 80-231 Gdansk, Poland tel.: +48 58 3411271, fax: +48 58 3416144
  • Institute of Fluid Flow Machinery, Polish Academy of Sciences Fiszera Street 14, 80-231 Gdansk, Poland tel.: +48 58 3411271, fax: +48 58 3416144
  • Institute of Fluid Flow Machinery, Polish Academy of Sciences Fiszera Street 14, 80-231 Gdansk, Poland tel.: +48 58 3411271, fax: +48 58 3416144
  • RAFAKO S.A., Dedusting Installations Division Górnośląska Street 3A, 43-200 Pszczyna, Poland tel.: +48 32 3263026, fax: +48 32 4153427
  • Gdynia Maritime University, Faculty of Marine Engineering Morska Street 81-87, 81-225 Gdynia, Poland tel.: +48 58 5586347, fax: +48 58 5586399
Bibliografia
  • [1] Ma, H., Steernberg, K., Riera-Palou, X., Tait, N., Well-to-wake energy and greenhouse gas analysis of SOX abatement options for the marine industry, Transport. Res., Part D 17, pp. 301-308, 2012.
  • [2] http://www.imo.org/en/MediaCentre/IMOMediaAccreditation/Pages/MEPC-74-media-infor mation.aspx.
  • [3] Richter, H., Howard, J. B., Formation of polycyclic aromatic hydrocarbons and their growth to soot-a review of chemical reaction pathways, Prog. Energy Combust. Sci., Vol. 26, pp. 565-608, 2000.
  • [4] Jaworek, A., Szudyga, M., Krupa, A., Czech, T., Sobczyk, A. T., Marchewicz, A., Antes, T. Balachandran, W., Beleca, R., Di Natale, F. Carotenuto, C., D’Addio, L., Lancia, A., Gregory, D., Jackson, M., Kozak, S., Volpe, L., Charchalis, A., Technical issues of PM removal from ship diesel engines. Transp. Res. Arena., 2014.
  • [5] Di Natale, F., Carotenuto, C., D’Addio, L., Jaworek, A., Krupa, A., Szudyga, M., Lancia, A., Capture of fine and ultrafine particles in a wet electrostatic scrubber, J. Environ. Chem. Eng. Vol. 3, pp. 349-356, 2015.
  • [6] Zhu, M., Li, K. X., Shi, W., Lam, J. S. L., Incentive policy for reduction of emission from ships: A case study of China, Marine Policy, Vol. 86, pp. 253-258, 2017.
  • [7] Sharifi, A., Mohebbi, A., A combined CFD modeling with population balance equation to predict pressure drop in venturi scrubbers, Res. Chem. Intermed., Vol. 40, No. 3, pp. 1021-1042, 2014.
  • [8] Bianchini, A., Pellegrini, M., Rossi, J., Saccani, C., Theoretical model and preliminary design of an innovative wet scrubber for the separation of fine particulate matter produced by biomass combustion in small size boilers, Biomass Bioenergy, Vol. 116, pp. 60-71, 2018
  • [9] Aragon, E., Woillez, J., Perice, C., Tabaries, F., Sitz, M., Corrosion resistant material selection for the manufacturing of marine diesel exhausts scrubbers, Mater. Des., Vol. 30, pp. 1548-1555, 2009.
  • [10] Penney, G. W., Electrified liquid spray dust-precipitators, U.S. Patent, Editor, 1944.
  • [11] Di Natale, F., Carotenuto, C., Manna, L., Esposito, M., La Motta, F., D’Addio, L., Lancia, A., Water Electrified Sprays for Emission Control in Energy Production Processes, IJHT, Vol. 34, Special Issue 2, pp. S597-S602, 2016.
  • [12] Jaworek, A., Balachandran, W., Krupa, A., Kulon, J., Lackowski, M., Wet Electroscrubbers for State of the Art Gas Cleaning, Environ. Sci. Technol., Vol. 40, No. 20, pp. 6197-6207, 2006.
  • [13] Chan, T. L., Lee, P. S., Siak, J. S., Diesel-Particulate Collection for Biological Testing. Comparison of Electrostatic Precipitation and Filtration, Environ. Sci. Technol., Vol. 15, No. 1, 1981.
  • [14] Hayashi, H., Takasaki, Y., Kawahara, K., Takashima, K., Mizuno, A., Electrostatic Charging and Precipitation of Diesel Soot, IEEE Trans. Ind. Appl., Vol. 47, No. 1, pp. 331-335, 2011.
  • [15] Kim, H. J., Han, B., Woo, C. G., Kim, Y. J., Submicron PM Removal of an ESP Combined with a Metallic Foam Filter for Large Volumetric Diesel Engines, IEEE Trans. Ind. Appl., Vol. 51, No. 5, pp. 4173-4179, 2015.
  • [16] Saiyasitpanich, P., Keener, T. C., Khang, S. J., Lu, M., Removal of diesel particulate matter (DPM) in a tubular wet electrostatic precipitator, J. Electrostat., Vol. 65, pp. 618-624, 2007.
  • [17] Thonglek, N., Dechthummarong, C., Kiatsiriroat, T., Soot Treatment by Using High Voltage Pulse Energized Electrostatic Precipitator, Energy Procedia, Vol. 9, pp. 292-298, 2011.
  • [18] Kittelson, D. B., Further studies of electrostatic collection and agglomeration of diesel particles, SAE Trans. ,Vol. 100, pp. 454–471, 1991.
  • [19] Zukeran, A., Ikeda, Y., Ehara, Y., Matsuyama, M., Ito, T., Takahashi, T., Kawakami, H., Takamatsu, T., Two-Stage-Type Electrostatic Precipitator Re-Entrainment Phenomena Under Diesel Flue Gases, IEEE Trans. Ind. Appl.,, Vol. 35, No. 2, pp. 346-351, 1999.
  • [20] Jaworek, A., Marchewicz, A., Sobczyk, A. T., Krupa, A., Czech, T., Two-stage electrostatic precipitator with dual-corona particle precharger for PM2.5 particles removal. J. Clean. Prod., Vol. 164, pp. 1645-1664, 2017.
  • [21] Jaworek, A., Marchewicz, A., Sobczyk, A. T., Krupa, A., Czech, T., Two-stage electrostatic precipitator with co- and counter-flow particle prechargers, J. Electrostat., Vol. 87, pp. 180-194, 2017.
  • [22] Sobczyk, A. T., Marchewicz, A., Krupa, A., Jaworek, A., Czech, T., Śliwiński, Ł., Kluk, D., Ottawa, A., Charchalis, A., Enhancement of collection efficiency for fly ash particles (PM2.5) by unipolar agglomerator in two-stage electrostatic precipitator, Sep. Purif. Technol., Vol. 187, pp. 91-101, 2017.
  • [23] Masuda, S., Moon, J. D., Electrostatic Precipitation of Carbon Soot from Diesel Engine Exhaust, IEEE Trans. Ind. Appl., Vol. IA-19, No. 6, pp. 1104-1111, 1983.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13fdaa3c-fded-4c1c-9b14-8099d3da1c0f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.