PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessing the Impact of Urban Development on Soil Health and Nutrient Cycling Across Urban Areas

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Urbanization, a hallmark of the 21st century, has significantly altered land use and environmental systems worldwide. This study aimed to bridge a critical research gap by investigating the effects of urbanization on soil properties, using Astana, Kazakhstan, as a case study to reflect broader urban soil trends. The objective was to assess soil texture, humus content, pH, and soluble salts across various land use categories, including residential, commercial, industrial, and forested areas, which served as control/reference sites. Soil samples were analyzed for nitrate nitrogen, available phosphorus, potassium, sulfur, humus, pH, and soluble salts such as calcium, magnesium, chloride, sulfate, and bicarbonate. Comparative analyses revealed notable variations in bulk density across land use categories. Residential areas exhibited lower bulk densities (topsoil: 1.24–1.32 g/cm3; subsoil: 1.41– 1.54 g/cm3), indicating lesser compaction. Conversely, commercial zones showed increased bulk densities (topsoil: 1.41–1.55 g/cm3; subsoil: 1.52–1.65 g/cm3), reflective of foot traffic and impermeable surfaces. Industrial zones recorded the highest bulk densities (topsoil: 1.55–1.62 g/cm3; subsoil: 1.63–1.76 g/cm3), largely attributed to heavy machinery and construction activities. Agricultural lands demonstrated moderate bulk densities (topsoil: 1.30–1.42 g/cm3; subsoil: 1.52–1.66 g/cm3), influenced by tillage practices, while forested areas had the lowest bulk densities (topsoil: 1.20–1.30 g/cm3; subsoil: 1.34–1.45 g/cm3), indicating minimal disturbance and higher organic content. Nutrient assessments indicated that nitrate nitrogen and phosphorus levels were generally moderate, with agricultural areas exhibited significantly higher phosphorus concentrations due to fertilizer application. Additionally, heavy metal concentrations, particularly lead and chromium, were found to be elevated in industrial zones, highlighting potential contamination risks. The study concluded that urban soils display diverse nutrient levels and physical properties, with forested areas providing a baseline for comparison. These findings emphasize the need for comprehensive soil evaluations in urban planning to address the specific conditions of different land use types. Implementing tailored management practices can enhance soil health and foster sustainable urban development on a larger scale.
Rocznik
Strony
106--123
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • L.N. Gumilyov Eurasian National University, 2 Satbayeva Str., Almaty District, Astana 010000, Kazakhstan
  • L.N. Gumilyov Eurasian National University, 2 Satbayeva Str., Almaty District, Astana 010000, Kazakhstan
  • L.N. Gumilyov Eurasian National University, 2 Satbayeva Str., Almaty District, Astana 010000, Kazakhstan
  • L.N. Gumilyov Eurasian National University, 2 Satbayeva Str., Almaty District, Astana 010000, Kazakhstan
  • L.N. Gumilyov Eurasian National University, 2 Satbayeva Str., Almaty District, Astana 010000, Kazakhstan
  • L.N. Gumilyov Eurasian National University, 2 Satbayeva Str., Almaty District, Astana 010000, Kazakhstan
Bibliografia
  • 1. Ruas R. de B., Costa L.M.S., Bered F. 2022. Urbanization driving changes in plant species and communities – A global view, Glob. Ecol. Conserv. 38, e02243. https://doi.org/10.1016/j.gecco.2022.e02243
  • 2. Gebre T., Gebremedhin B. 2019. The mutual benefits of promoting rural-urban interdependence through linked ecosystem services, Glob. Ecol. Conserv. 20, e00707. https://doi.org/10.1016/j.gecco.2019.e00707
  • 3. Zhou Y., Smith S.J., Zhao K., Imhoff M., Thomson A., Bond-Lamberty B., Asrar G.R., Zhang X., He C., Elvidge C.D. 2015. A global map of urban extent from nightlights, Environ. Res. Lett. 10054011. https://doi.org/10.1088/1748-9326/10/5/054011
  • 4. Seto K.C., Güneralp B., Hutyra L.R. 2012. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools, Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.1211658109
  • 5. Tang J., Liu D., Shang C., Niu J. 2024. Impacts of land use change on surface infiltration capacity and urban flood risk in a representative karst mountain city over the last two decades, J. Clean. Prod. 454, 142196. https://doi.org/10.1016/j.jclepro.2024.142196
  • 6. Mathew A., Khandelwal S., Kaul N. 2016. Spatial and temporal variations of urban heat island effect and the effect of percentage impervious surface area and elevation on land surface temperature: Study of Chandigarh city, India, Sustain. Cities Soc. https://doi.org/10.1016/j.scs.2016.06.018.
  • 7. Zhang F., Zhong J., Zhao Y., Cai C., Liu W., Wang Q., Wang W., Wang H., Jiang X., Yuan R. 2024. Urbanization-induced soil organic carbon loss and microbial-enzymatic drivers: insights from aggregate size classes in Nanchang city, China, Front. Microbiol. https://doi.org/10.3389/fmicb.2024.1367725
  • 8. Yang J.L., Zhang G.L. 2015. Formation, characteristics and eco-environmental implications of urban soils – A review, Soil Sci. Plant Nutr. https://doi.org/10.1080/00380768.2015.1035622
  • 9. Zhang J., Peng W., Lin M., Liu C., Chen S., Wang X., Gui H. 2023. Environmental geochemical baseline determination and pollution assessment of heavy metals in farmland soil of typical coal-based cities: A case study of Suzhou City in Anhui Province, China, Heliyon. https://doi.org/10.1016/j.heliyon.2023.e14841
  • 10. Sajjad M., Huang Q., Khan S., Khan M.A., Liu Y., Wang J., Lian F., Wang Q., Guo G. 2022. Microplastics in the soil environment: A critical review, Environ. Technol. Innov. 27, 102408. https://doi.org/10.1016/j.eti.2022.102408
  • 11. Chuma G.B., Mondo J.M., Ndeko A.B., Bagula E.M., Lucungu P.B., Bora F.S., Karume K., Mushagalusa G.N., Schmitz S., Bielders C.L. 2022. Farmers’ knowledge and practices of soil conservation techniques in smallholder farming systems of Northern Kabare, East of D.R. Congo, Environ. Challenges. 7, 100516. https://doi.org/10.1016/j.envc.2022.100516
  • 12. Mwanake H., Mehdi-Schulz B., Schulz K., Kitaka N., Olang L.O., Lederer J., Herrnegger M. 2023. Agricultural practices and soil and water conservation in the transboundary region of Kenya and Uganda: Farmers’ perspectives of current soil erosion, Agric. https://doi.org/10.3390/agriculture13071434
  • 13. Braito M., Leonhardt H., Penker M., Schauppenlehner-Kloyber E., Thaler G., Flint C.G. 2020. The plurality of farmers’ views on soil management calls for a policy mix, Land Use Policy. 99, 104876. https://doi.org/10.1016/j.landusepol.2020.104876
  • 14. Padhye L.P., Srivastava P., Jasemizad T., Bolan S., Hou D., Shaheen S.M., Rinklebe J., O’Connor D., Lamb D., Wang H., Siddique K.H.M., Bolan N. 2023 Contaminant containment for sustainable remediation of persistent contaminants in soil and groundwater, J. Hazard. Mater. 455, 131575. https://doi.org/10.1016/j.jhazmat.2023.131575
  • 15. Bai Y., Zhang Y., Liu X., Wang Y. 2023. The spatial distribution and source apportionment of heavy metals in soil of Shizuishan, China, Environ. Earth Sci. 82, 494. https://doi.org/10.1007/s12665-023-11192-8
  • 16. Qin G., Wu J., Zheng X., Zhou R., Wei Z. 2019. Phosphorus forms and associated properties along an urban–rural gradient in Southern China, Water.11, 2504. https://doi.org/10.3390/w11122504
  • 17. Li Y., Xu Z., Ren H., Wang D., Wang J., Wu Z., Cai P. 2022. Spatial distribution and source apportionment of heavy metals in the topsoil of Weifang City, East China, Front. Environ. Sci. https://doi.org/10.3389/fenvs.2022.893938
  • 18. Du J., Yu M., Cong Y., Lv H., Yuan Z. 2022. Soil organic carbon storage in urban green space and its influencing factors: A case study of the 0–20 cm soil layer in Guangzhou City, Land. 11, 1484. https://doi.org/10.3390/land11091484
  • 19. Chai L., Wang Y., Wang X., Ma L., Cheng Z., Su L. 2021. Pollution characteristics, spatial distributions, and source apportionment of heavy metals in cultivated soil in Lanzhou, China, Ecol. Indic. 125, 107507. https://doi.org/10.1016/j.ecolind.2021.107507
  • 20. Peng C., Chen W., Liao X., Wang M., Ouyang Z., Jiao W., Bai Y. 2011. Polycyclic aromatic hydrocarbons in urban soils of Beijing: Status, sources, distribution and potential risk, Environ. Pollut. 159, 802–808. https://doi.org/10.1016/j.envpol.2010.11.003
  • 21. Zhou J., Gao P., Wu C., Mu X. 2023. Analysis of land use change characteristics and its driving forces in the loess plateau: A case study in the Yan River Basin, Land. https://doi.org/10.3390/land12091653
  • 22. Su C., Meng J., Zhou Y., Bi R., Chen Z., Diao J., Huang Z., Kan Z., Wang T. 2022. Heavy metals in soils from intense industrial areas in South China: Spatial distribution, source apportionment, and risk assessment, front. Environ. Sci. https://doi.org/10.3389/fenvs.2022.820536
  • 23. Oke T.R. 1982. The energetic basis of the urban heat island, Q. J. R. Meteorol. Soc. https://doi.org/10.1002/qj.49710845502
  • 24. Park J.H., Lamb D., Paneerselvam P., Choppala G., Bolan N., Chung J.-W. 2011. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils, J. Hazard. Mater. 185, 549–574. https://doi.org/10.1016/j.jhazmat.2010.09.082
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13fb5305-27ff-4459-9ce6-68f1c46f1983
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.