Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper outlines the principle of the DNP-NMR technique. The gyrotron, as a very promising microwave source for NMR spectroscopy, is evaluated. Four factors: power stability, power tuning, frequency stability, and frequency tuning determine the usability of the gyrotron device. The causes of instabilities, as well as the methods of overcoming limitations and extending usability are explained with reference to the theory, the numerical and experimental results reported by gyrotron groups.
Rocznik
Tom
Strony
art. no. e140354
Opis fizyczny
Bibliogr. 101 poz., rys.
Twórcy
autor
- Wroclaw University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
Bibliografia
- [1] H. Gunther, NMR Spectroscopy: Basic Principles, Concepts and Applications in Chemistry. Wiley, 2013.
- [2] K. Zia, T. Siddiqui, S. Ali, I. Farooq, M. S. Zafar, and Z. Khurshid, “Nuclear Magnetic Resonance Spectroscopy for Medical and Dental Applications: A Comprehensive Review,” Eur. J. Dentistry, vol. 13, no. 01, pp. 124–128, Feb. 2019, doi: 10.1055/s-0039-1688654.
- [3] R.A. de Graaf, In Vivo NMR Spectroscopy: Principles and Techniques. John Wiley and Sons Ltd., 2019, doi: 10.1002/9781119382461.
- [4] M.E. Smith and J.H. Strange, “NMR techniques in materials physics: a review,” Meas. Sci. Technol., vol. 7, no. 4, pp. 449–475, Apr. 1996, doi: 10.1088/0957-0233/7/4/002.
- [5] V.S. Mandala and M. Hong, “High-sensitivity protein solid-state NMR spectroscopy,” Curr. Opin. Struct. Biol., vol. 58, pp. 183–190, Oct. 2019, doi: 10.1016/j.sbi.2019.03.027.
- [6] K. Inomata et al., “High-resolution multi-dimensional NMR spectroscopy of proteins in human cells,” Nature, vol. 458, no. 7234, pp. 106–109, Mar. 2009, doi: 10.1038/nature07839.
- [7] E. Hatzakis, “Nuclear Magnetic Resonance (NMR) Spectroscopy in Food Science: A Comprehensive Review: NMR spectroscopy in food science,” Compr. Rev. Food Sci. Food Saf., vol. 18, no. 1, pp. 189–220, Jan. 2019, doi: 10.1111/1541-4337.12408.
- [8] P.H. Keizers et al., “Benchtop NMR spectroscopy in the analysis of substandard and falsified medicines as well as illegal drugs,” J. Pharm. Biomed. Anal., vol. 178, p. 112939, Jan. 2020, doi: 10.1016/j.jpba.2019.112939.
- [9] A.W. Chan et al., “1H-NMR urinary metabolomic profiling for diagnosis of gastric cancer,” Br. J. Cancer, vol. 114, no. 1, pp. 59–62, Jan. 2016, doi: 10.1038/bjc.2015.414.
- [10] J.K. Nicholson, I.D. Wilson, and J.C. Lindon, “Pharmacometabonomics as an effector for personalized medicine,” Pharmacogenomics, vol. 12, no. 1, pp. 103–111, Jan. 2011, doi: 10.2217/pgs.10.157.
- [11] D. Chen, Z. Wang, D. Guo, V. Orekhov, and X. Qu, “Review and Prospect: Deep Learning in Nuclear Magnetic Resonance Spectroscopy,” Chem.-Eur. J., p. chem.202000246, Jun. 2020, doi: 10.1002/chem.202000246.
- [12] D. Svozil, V. Kvasnicka, and J. Pospichal, “Introduction to multi-layer feed-forward neural networks,” Chemometrics Intell. Lab. Syst., vol. 39, no. 1, pp. 43–62, Nov. 1997, doi: 10.1016/S0169-7439(97)00061-0.
- [13] N. Aloysius and M. Geetha, “A review on deep convolutional neural networks,” in 2017 International Conference on Communication and Signal Processing (ICCSP). Chennai: IEEE, Apr. 2017, pp. 0588–0592, doi: 10.1109/ICCSP.2017.8286426.
- [14] A. Krizhevsky, I. Sutskever, and G.E. Hinton, “ImageNet classification with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6, pp. 84–90, May 2017, doi: 10.1145/3065386.
- [15] R.J. Williams and D. Zipser, “A learning algorithm for continually running fully recurrent neural networks,” Neural Comput., vol. 1, no. 2, pp. 270–280, 1989, doi: 10.1162/neco.1989.1.2.270.
- [16] G.S. Nusinovich, M.K.A. Thumm, and M.I. Petelin, “The Gyrotron at 50: Historical Overview,” J. Infrared Millim. Terahertz Waves, vol. 35, no. 4, pp. 325–381, Apr. 2014, doi: 10.1007/s10762-014-0050-7.
- [17] E. Plinski, “Gorky’s Gyrotron Heroes,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 6, pp. 1257–1262, 2020, doi: 10.24425/bpasts.2020.135392.
- [18] M. Thumm, “State-of-the-Art of High-Power Gyro-Devices and Free Electron Masers,” J. Infrared Millim. Terahertz Waves, vol. 41, no. 1, pp. 1–140, Jan. 2020, doi: 10.1007/s10762-019-00631-y.
- [19] R. Temkin, V. Granatstein, and G.S. Nusinowich, Introduction to the Physics of Gyrotrons. Johns Hopkins University Press, 2004, doi: 10.1353/book.62236.
- [20] V. Bargmann, L. Michel, and V.L. Telegdi, “Precession of the Polarization of Particles Moving in a Homogeneous Electromagnetic Field,” Phys. Rev. Lett., vol. 2, no. 10, pp. 435–436, May 1959, doi: 10.1103/PhysRevLett.2.435.
- [21] B. Plainchont, P. Berruyer, J.-N. Dumez, S. Jannin, and P. Giraudeau, “Dynamic Nuclear Polarization Opens New Perspectives for NMR Spectroscopy in Analytical Chemistry,” Anal. Chem., vol. 90, no. 6, pp. 3639–3650, Mar. 2018, doi: 10.1021/acs.analchem.7b05236.
- [22] A.W. Overhauser, “Polarization of Nuclei in Metals,” Phys. Rev., vol. 92, no. 2, pp. 411–415, Oct. 1953, doi: 10.1103/PhysRev.92.411.
- [23] S. Pylaeva, K.L. Ivanov, M. Baldus, D. Sebastiani, and H. Elgabarty, “Molecular Mechanism of Overhauser Dynamic Nuclear Polarization in Insulating Solids,” J. Phys. Chem. Lett., vol. 8, no. 10, pp. 2137–2142, May 2017, doi: 10.1021/acs.jpclett.7b00561.
- [24] H. Heise and S. Matthews, Modern NMR Methodology. Springer, Berlin, Heidelberg, 2013, doi: 10.1007/978-3-642-37991-8.
- [25] M.L. Mak-Jurkauskas and R.G. Griffin, “High-Frequency Dynamic Nuclear Polarization,” in Encyclopedia of Magnetic Resonance, R.K. Harris, Ed. Chichester, UK: John Wiley & Sons, Ltd, Mar. 2010, doi: 10.1002/9780470034590.emrstm1183.
- [26] L. Thankamony, S. Aany, J.J. Wittmann, M. Kaushik, and B. Corzilius, “Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR,” Prog. Nucl. Magn. Reson. Spectrosc., vol. 102-103, pp. 120–195, Nov. 2017, doi: 10.1016/j.pnmrs.2017.06.002.
- [27] E.A. Nanni, A.B. Barnes, R.G. Griffin, and R.J. Temkin, “THz Dynamic Nuclear Polarization NMR,” IEEE Trans. Terahertz Sci. Technol., vol. 1, no. 1, pp. 145–163, Sep. 2011, doi: 10.1109/TTHZ.2011.2159546.
- [28] M. Pourfathi et al., “Low-temperature dynamic nuclear polarization of gases in Frozen mixtures: Method for DNP of Gases in Frozen Mixtures,” Magn. Reson. Med., vol. 76, no. 3, pp. 1007–1014, Sep. 2016, doi: 10.1002/mrm.26002.
- [29] K.V. Kovtunov et al., “Hyperpolarized NMR Spectroscopy: d-DNP, PHIP, and SABRE Techniques,” Chem. Asian J., vol. 13, no. 15, pp. 1857–1871, Aug. 2018, doi: 10.1002/asia.201800551.
- [30] G. Pavlovskaya, J. Six, T. Meersman, N. Gopinathan, and S.P. Rigby, “NMR imaging of low pressure, gas-phase transport in packed beds using hyperpolarized xenon-129,” AlChE J., vol. 61, no. 11, pp. 4013–4019, Nov. 2015, doi: 10.1002/aic.14929.
- [31] M. Ha and V.K. Michaelis, “High-frequency dynamic nuclear polarization nmr for solids: Part 1 – an introduction,” in Modern Magnetic Resonance, G.A. Webb, Ed. Cham: Springer International Publishing, 2017, pp. 1–24, doi: 10.1007/978-3-319-28275-6_140-1.
- [32] K.J. Pike et al., “A spectrometer designed for 6.7 and 14.1T DNP-enhanced solid-state MAS NMR using quasi-optical microwave transmission,” J. Magn. Reson., vol. 215, pp. 1–9, Feb. 2012, doi: 10.1016/j.jmr.2011.12.006.
- [33] Y. Matsuki et al., “Helium-cooling and -spinning dynamic nuclear polarization for sensitivity-enhanced solid-state NMR at 14T and 30K,” J. Magn. Reson., vol. 225, pp. 1–9, Dec. 2012, doi: 10.1016/j.jmr.2012.09.008.
- [34] K.R. Chu, “The electron cyclotron maser,” Rev. Mod. Phys., vol. 76, no. 2, p. 52, 2004.
- [35] T. Idehara, Y. Shimizu, I. Ogawa, T. Tatsukawa, and G.F. Brand, “Rapid frequency step-switching in submillimeter wave gyrotrons (Gyrotrons FU III and FU IV),” Phys. Plasma, vol. 6, no. 6, pp. 2613–2617, Jun. 1999, doi: 10.1063/1.873533.
- [36] T. Idehara, M. Pereyaslavets, N. Nishida, K. Yoshida, and I. Ogawa, “Frequency Modulation in a Submillimeter-Wave Gyrotron,” Phys. Rev. Lett., vol. 81, no. 9, pp. 1973–1976, Aug. 1998, doi: 10.1103/PhysRevLett.81.1973.
- [37] T. Idehara et al., “High speed frequency modulation of a 460 GHz gyrotron for application to the 700 MHz DNP enhanced NMR spectroscopy,” in 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). Hong Kong, China: IEEE, Aug. 2015, pp. 1–2, doi: 10.1109/IRMMW-THz.2015.7327859.
- [38] K. Ueda, Y. Matsuki, T. Fujiwara, Y. Tatematsu, I. Ogawa, and T. Idehara, “Further Characterization of 394-GHz Gyrotron FU CW GII with Additional PID Control System for 600-MHz DNP-SSNMR Spectroscopy,” J. Infrared Millim. Terahertz Waves, vol. 37, no. 9, pp. 825–836, Sep. 2016, doi: 10.1007/s10762-016-0276-7.
- [39] L. Luo, S. Pan, C.-H. Du, M.-G. Huang, and P.-K. Liu, “Terahertz Ultralow-Voltage Gyrotron With Upstream Output,” IEEE Trans. Plasma Sci., vol. 48, no. 4, pp. 1195–1201, Apr. 2020, doi: 10.1109/TPS.2020.2979224.
- [40] A.C. Torrezan et al., “Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance,” IEEE Trans. Plasma Sci., vol. 38, no. 6, pp. 1150–1159, Jun. 2010, doi: 10.1109/TPS.2010.2046617.
- [41] T. Idehara et al., “Continuously Frequency Tunable High Power Sub-THz Radiation Source–Gyrotron FU CW VI for 600 MHz DNP-NMR Spectroscopy,” J. Infrared Millim. Terahertz Waves, vol. 31, no. 7, pp. 775–790, Jul. 2010, doi: 10.1007/s10762-010-9643-y.
- [42] A.B. Barnes, E.A. Nanni, J. Herzfeld, R.G. Griffin, and R.J. Temkin, “A 250 GHz gyrotron with a 3 GHz tuning bandwidth for dynamic nuclear polarization,” J. Magn. Reson., vol. 221, pp. 147–153, Aug. 2012, doi: 10.1016/j.jmr.2012.03.014.
- [43] T. Idehara et al., “460 GHz second harmonic gyrotrons for a 700 MHz DNP-NMR spectroscopy,” in 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). Mainz, Germany: IEEE, Sep. 2013, pp. 1–2, doi: 10.1109/IRMMW-THz.2013.6665482.
- [44] S. Jawla et al., “Continuously Tunable 250 GHz Gyrotron with a Double Disk Window for DNP-NMR Spectroscopy,” J. Infrared Millim. Terahertz Waves, vol. 34, no. 1, pp. 42–52, Jan. 2013, doi: 10.1007/s10762-012-9947-1.
- [45] R.K. Singh and M. Thottappan, “Design and PIC Simulation Studies of Millimeter-Wave-Tunable Gyrotron Using Metal PBG Cavity as its RF Interaction Circuit,” IEEE Trans. Plasma Sci., vol. 48, no. 4, pp. 845–851, Apr. 2020, doi: 10.1109/TPS.2020.2974791.
- [46] W. Fu, X. Guan, and Y. Yan, “Generating High-Power Continuous-Frequency Tunable Sub-Terahertz Radiation From a Quasi-Optical Gyrotron With Confocal Waveguide,” IEEE Electron Device Lett., vol. 41, no. 4, pp. 613–616, Apr. 2020, doi: 10.1109/LED.2020.2972380.
- [47] K.D. Hong, G.F. Brand, and T. Idehara, “A 150–600 GHz steptunable gyrotron,” J. Appl. Phys., vol. 74, no. 8, pp. 5250–5258, Oct. 1993, doi: 10.1063/1.354265.
- [48] S.P. Sabchevski and T. Idehara, “A numerical study on finitebandwidth resonances of high-order axial modes (HOAM) in a gyrotron cavity,” J. Infrared Millim. Terahertz Waves, vol. 36, no. 7, pp. 628–653, 2015.
- [49] M. Hornstein et al., “Second Harmonic Operation at 460 GHz and Broadband Continuous Frequency Tuning of a Gyrotron Oscillator,” IEEE Trans. Electron Devices, vol. 52, no. 5, pp. 798–807, May 2005, doi: 10.1109/TED.2005.845818.
- [50] R.J. Temkin, “Development of terahertz gyrotrons for spectroscopy at MIT,” THz Sci. Technol., vol. 7, no. 1, pp. 1–9, 2014.
- [51] T. Idehara et al., “The 1 THz gyrotron at Fukui University,” in 2007 Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics. Cardiff: IEEE, Sep. 2007, pp. 309–311, doi: 10.1109/ICIMW.2007.4516512.
- [52] V. Bratman et al., “Review of Subterahertz and Terahertz Gyrodevices at IAP RAS and FIR FU,” IEEE Trans. Plasma Sci., vol. 37, no. 1, pp. 36–43, Jan. 2009, doi: 10.1109/TPS.2008. 2004787.
- [53] T. Idehara and S.P. Sabchevski, “Development and Applications of High–Frequency Gyrotrons in FIR FU Covering the sub-THz to THz Range,” J. Infrared Millim. Terahertz Waves, vol. 33, no. 7, pp. 667–694, Jul. 2012, doi: 10.1007/s10762-011-9862-x.
- [54] S. Alberti et al., “Experimental study from linear to chaotic regimes on a terahertz-frequency gyrotron oscillator,” Phys. Plasma, vol. 19, no. 12, p. 123102, Dec. 2012, doi: 10.1063/1.4769033.
- [55] J.-P. Hogge et al., “Detailed characterization of a frequencytunable 260 GHz gyrotron oscillator planned for DNP/NMR spectroscopy,” in 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). Mainz, Germany: IEEE, Sep. 2013, pp. 1–2, doi: 10.1109/IRMMW-THz.2013.6665407.
- [56] Y. Rozier et al., “Manufacturing of a 263 GHz continuously tunable gyrotron,” in 2013 IEEE 14th International Vacuum Electronics Conference (IVEC). Paris, France: IEEE, May 2013, pp. 1–2, doi: 10.1109/IVEC.2013.6571071.
- [57] F. Braunmueller, T.M. Tran, S. Alberti, J.-P. Hogge, and M.Q. Tran, “Moment-based, self-consistent linear analysis of gyrotron oscillators,” Phys. Plasma, vol. 21, no. 4, p. 043105, Apr. 2014, doi: 10.1063/1.4870082.
- [58] M. Thumm et al., “Frequency step-tunable (114–170 GHz) megawatt gyrotrons for plasma phys., applications,” Fusion Eng. Des., vol. 53, no. 1-4, pp. 407–421, Jan. 2001, doi: 10.1016/S0920-3796(00)00519-6.
- [59] E. Borie et al., “Possibilities for multifrequency operation of a gyrotron at fzk,” IEEE Trans. Plasma Sci., vol. 30, no. 3, pp. 828–834, Jun. 2002, doi: 10.1109/TPS.2002.801561.
- [60] V. Zapevalov et al., “Optimization of the frequency step tunable 105–170 GHz 1 MW gyrotron prototype,” in Twenty Seventh International Conference on Infrared and Millimeter Waves. San Diego, CA, USA: IEEE, 2002, pp. 1–2, doi: 10.1109/ICIMW.2002.1076054.
- [61] M.Y. Glyavin et al., “Experimental tests of a 263 GHz gyrotron for spectroscopic applications and diagnostics of various media,” Rev. Sci. Instrum., vol. 86, no. 5, p. 054705, May 2015, doi: 10.1063/1.4921322.
- [62] G.G. Denisov, M.Y. Glyavin, A.E. Fedotov, and I.V. Zotova, “Theoretical and Experimental Investigations of Terahertz-Range Gyrotrons with Frequency and Spectrum Control,” J. Infrared Millim. Terahertz Waves, vol. 41, pp. 1131–1143, Mar. 2020, doi: 10.1007/s10762-020-00672-8.
- [63] T.H. Chang, T. Idehara, I. Ogawa, L. Agusu, and S. Kobayashi, “Frequency tunable gyrotron using backward-wave components,” J. Appl. Phys., vol. 105, no. 6, p. 063304, Mar. 2009, doi: 10.1063/1.3097334.
- [64] V.S. Bajaj et al., “250GHz CW gyrotron oscillator for dynamic nuclear polarization in biological solid state NMR,” J. Magn. Reson., vol. 189, no. 2, pp. 251–279, Dec. 2007, doi: 10.1016/j.jmr.2007.09.013.
- [65] S.-T. Han et al., “Spectral Characteristics of a 140-GHz Long-Pulsed Gyrotron,” IEEE Trans. Plasma Sci., vol. 35, no. 3, pp. 559–564, Jun. 2007, doi: 10.1109/TPS.2007.896931.
- [66] S. Sabchevski and T. Idehara, “Resonant Cavities for Frequency Tunable Gyrotrons,” Int. J. Infrared Millimeter Waves, vol. 29, no. 1, pp. 1–22, Jan. 2008, doi: 10.1007/s10762-007-9297-6.
- [67] C.T. Iatrou, S. Kern, and A.B. Pavalyev, “Coaxial Cavities with Corrugated Inner Conductor for Gyrotrons,” IEEE Trans. Microwave Theory Tech., vol. 44, no. 1, pp. 56–64, 1996, doi: 10.1109/22.481385.
- [68] O. Dumbrajs and A. Mobius, “Tunable coaxial gyrotron for plasma heating and diagnostics,” Int. J. Electron., vol. 84, no. 4, pp. 411–419, Apr. 1998, doi: 10.1080/002072198134751.
- [69] M. Pereyaslavets, O. Braz, S. Kern, M. Losert, A. Mobius, and M. Thumm, “Improvements of mode converters for low-power excitation of gyrotron-type modes,” Int. J. Electron., vol. 82, no. 1, pp. 107–116, 1997, doi: 10.1080/002072197136291.
- [70] M. Glyavin, V. Khizhnyak, A. Luchinin, T. Idehara, and T. Saito, “The Design of the 394.6 Ghz Continuously Tunable Coaxial Gyrotron for DNP Spectroscopy,” Int. J. Infrared Millimeter Waves, vol. 29, no. 7, pp. 641–648, Jul. 2008, doi: 10.1007/s10762-008-9364-7.
- [71] O. Dumbrajs, T. Idehara, Y. Iwata, S. Mitsudo, I. Ogawa, and B. Piosczyk, “Hysteresis-like effects in gyrotron oscillators,” Phys. Plasma, vol. 10, no. 5, pp. 1183–1186, May 2003, doi: 10.1063/1.1561277.
- [72] O. Dumbrajs, E.M. Khutorysn, and T. Idehara, “Hysteresis and frequency tunability of gyrotrons,” in 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). Hong Kong, China: IEEE, Aug. 2015, pp. 1–1, doi: 10.1109/IRMMW-THz.2015.7327858.
- [73] M. Meshram, “Tuning of PID controller using Ziegler-Nichols method for speed control of DC motor,” in IEEE-International Conference On Advances In Engineering, Science And Management (ICAESM -2012), 2012, pp. 117–122.
- [74] A. Noshadi, J. Shi, W.S. Lee, P. Shi, and A. Kalam, “Optimal PID-type fuzzy logic controller for a multi-input multi-output active magnetic bearing system,” Neural Comput. Appl., vol. 27, no. 7, p. 2031–2046, Oct 2016, doi: 10.1007/s00521-015-1996-7.
- [75] E.M. Khutoryan, T. Idehara, A.N. Kuleshov, and K. Ueda, “Gyrotron Output Power Stabilization by PID Feedback Control of Heater Current and Anode Voltage,” J. Infrared Millim. Terahertz Waves, vol. 35, no. 12, pp. 1018–1029, Dec. 2014, doi: 10.1007/s10762-014-0105-9.
- [76] O.I. Louksha, D.B. Samsonov, G.G. Sominski, and S.V. Syomin, “Suppression of emission nonuniformity effect in gyrotrons,” in 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). Tucson, AZ, USA: IEEE, Sep. 2014, pp. 1–2, doi: 10.1109/IRMMW-THz.2014.6956492.
- [77] O. Dumbrajs and T. Idehara, “Study of Mode Competition in the Third Harmonic Gyrotron with Inclusion of the Electron Velocity Spread and the Beam Width,” in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). Nagoya: IEEE, Sep. 2018, pp. 1–2, doi: 10.1109/IRMMW-THz.2018.8509845.
- [78] O. Louksha, B. Piosczyk, G. Sominski, M. Thumm, and D. Samsonov, “On potentials of gyrotron efficiency enhancement: measurements and simulations on a 4-mm gyrotron,” IEEE Trans. Plasma Sci., vol. 34, no. 3, pp. 502–511, Jun. 2006, doi: 10.1109/TPS.2006.875779.
- [79] O.I. Louksha, D.B. Samsonov, G.G. Sominski, and S.V. Syomin, “Improvement of electron beam quality and gyrotron efficiency by optimization of electric field distribution in the gun region,” in 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). Mainz, Germany: IEEE, Sep. 2013, pp. 1–2, doi: 10.1109/IRMMW-THz.2013.6665437.
- [80] O.I. Louksha et al., “Gyrotron Research at SPbPU: Diagnostics and Quality Improvement of Electron Beam,” IEEE Trans. Plasma Sci., vol. 44, no. 8, pp. 1310–1319, Aug. 2016, doi: 10.1109/TPS.2016.2590143.
- [81] O.I. Louksha, “Numerical simulation of low-frequency collective processes in gyrotron electron beams,” in 35th International Conference on Infrared, Millimeter, and Terahertz Waves. Rome, Italy: IEEE, Sep. 2010, pp. 1–2, doi: 10.1109/ICIMW.2010.5613030.
- [82] A. Fokin et al., “High-power sub-terahertz source with a record frequency stability at up to 1 Hz,” Sci. Rep., vol. 8, no. 1, p. 4317, Dec. 2018, doi: 10.1038/s41598-018-22772-1.
- [83] E.M. Khutoryan et al., “Stabilization of Gyrotron Frequency by PID Feedback Control on the Acceleration Voltage,” J. Infrared Millim. Terahertz Waves, vol. 36, no. 12, pp. 1157–1163, Dec. 2015, doi: 10.1007/s10762-015-0212-2.
- [84] T. Idehara et al., “High-Speed Frequency Modulation of a 460-GHz Gyrotron for Enhancement of 700-MHz DNP-NMR Spectroscopy,” J. Infrared Millim. Terahertz Waves, vol. 36, no. 9, pp. 819–829, Sep. 2015, doi: 10.1007/s10762-015-0176-2.
- [85] E.M. Khutoryan et al., “Simultaneous Stabilization of Gyrotron Frequency and Power by PID Double Feedback Control on the Acceleration and Anode Voltages,” J. Infrared Millim. Terahertz Waves, vol. 38, no. 7, pp. 813–823, Jul. 2017, doi: 10.1007/s10762-017-0374-1.
- [86] S. Pan, C.-H. Du, Z.-C. Gao, H.-Q. Bian, and P.-K. Liu, “Electronic-Tuning Frequency Stabilization of a Terahertz Gyrotron Oscillator,” IEEE Trans. Electron Devices, vol. 65, no. 8, pp. 3466–3473, Aug. 2018, doi: 10.1109/TED.2018.2839907.
- [87] N. Kumar, U. Singh, and A. Bera, “Triode Type Coaxial Inverse Magnetron Injection Gun for 2-MW, 240-GHz Gyrotron,” IEEE Trans. Electron. Dev., vol. 66, no. 7, p. 6, 2019.
- [88] A. Mishra, A. Bera, and M.V. Kartyikeyan, “Design of Magnetron Injection Gun for 140 GHz, 1MW Gyrotron,” in 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), 2020, p. 2, doi: 10.1109/CONECCT50063.2020.9198459.
- [89] I.G. Pagonakis et al., “Triode magnetron injection gun for the KIT 2 MW 170 GHz coaxial cavity gyrotron,” Phys. Plasma, vol. 27, p. 9, 2020.
- [90] F.J. Scott, “Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization,” J. Magn. Reson., vol. 289, p. 45–54, 2018, doi: 10.1016/j.jmr.2018.02.010.
- [91] A.P. Fokin et al., “Control of sub-terahertz gyrotron frequency by modulation-anode voltage: Comparison of theoretical and experimental results,” Rev. Sci. Instrum., vol. 90, no. 12, p. 124705, Dec. 2019, doi: 10.1063/1.5132831.
- [92] M.Y. Glyavin et al., “Frequency Stabilization in a Sub-Terahertz Gyrotron With Delayed Reflections of Output Radiation,” IEEE Trans. Plasma Sci., vol. 46, no. 7, pp. 2465–2469, Jul. 2018, doi: 10.1109/TPS.2018.2797480.
- [93] M.Y. Glyavin, G.G. Denisov, M.L. Kulygin, and Y.V. Novozhilova, “Stabilization of gyrotron frequency by reflection from nonresonant and resonant loads,” Tech. Phys. Lett., vol. 41, no. 7, pp. 628–631, Jul. 2015, doi: 10.1134/S106378501507007X.
- [94] A.A. Bogdashov, M.Y. Glyavin, R.M. Rozental’, A.P. Fokin, and V.P. Tarakanov, “Narrowing of the Emission Spectrum of a Gyrotron with External Reflections,” Tech. Phys. Lett., vol. 44, no. 3, pp. 221–224, Mar. 2018, doi: 10.1134/S1063785018030069.
- [95] I.V. Zotova, G.G. Denisov, N.S. Ginzburg, A.S. Sergeev, and R.M. Rozental, “Time-domain theory of low-Q gyrotrons with frequency-dependent reflections of output radiation,” Phys. Plasma, vol. 25, no. 1, p. 013104, Jan. 2018, doi: 10.1063/1.5008666.
- [96] M.M. Melnikova, A.V. Tyshkun, A.G. Rozhnev, and N.M. Ryskin, “Theoretical Analysis of Gyrotron Self-Injection Locking by Delayed Reflection,” in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). Nagoya: IEEE, Sep. 2018, pp. 1–2, doi: 10.1109/IRMMW-THz.2018.8510318.
- [97] M.M. Melnikova, A.B. Adilova, and N.M. Ryskin, “Using Reflections for Suppressing Parasitic Oscillation in a Multimode Gyrotron,” in 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). Paris, France: IEEE, Sep. 2019, pp. 1–2, doi: 10.1109/IRMMW-THz.2019.8874071.
- [98] A.P. Fokin et al., “High Cyclotron Harmonics Excitation in Multi-beam Terahertz Range Gyrotrons,” in 2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring). Rome, Italy: IEEE, Jun. 2019, pp. 2636–2639, doi: 10.1109/PIERS-Spring46901.2019.9017415.
- [99] A. Kuleshov et al., “Low-Voltage Operation of the Double-Beam Gyrotron at 400 GHz,” IEEE Trans. Electron Devices, vol. 67, no. 2, pp. 673–676, Feb. 2020, doi: 10.1109/TED.2019.2957873.
- [100] T. Idehara, S. P. Sabchevski, M. Glyavin, and S. Mitsudo, “The Gyrotrons as Promising Radiation Sources for THz Sensing and Imaging,” Appl. Sci., vol. 10, no. 3, p. 980, Feb. 2020, doi: 10.3390/app10030980.
- [101] M. Hruszowiec et al., “The Microwave Sources for EPR Spectroscopy,” J. Telecomm. Inf. Technol., no. 2, pp. 18–25, Jul. 2017, doi: 10.26636/jtit.2017.107616.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13f8a203-e542-49a0-bdf2-3c82c6967767