PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A synthesis of adaptive, low-power real-time embedded systems for ARM big.LITTLE technology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we present a method of a synthesis of adaptive schedulers for real-time embedded systems. We assume that the system is implemented using a multi-core embedded processor with low-power processing capabilities. First, the developmental genetic programming is used to generate the scheduler and the initial schedule. Then during the system execution, the scheduler modifies the schedule whenever the execution time of the recently finished task has been shorter or longer than expected. The goal of rescheduling is to minimize the power consumption while all time constraints will be satisfied. We present a real-life example as well as some experimental results showing the advantages of the method.
Wydawca
Rocznik
Strony
340--342
Opis fizyczny
Bibliogr. 12 poz., rys., tab.
Twórcy
  • Department of Information Systems, Kielce University of Technology, 7 1000-lecia Państwa Polskiego Ave., 25-314 Kielce, Poland
autor
  • Department of Information Systems, Kielce University of Technology, 7 1000-lecia Państwa Polskiego Ave., 25-314 Kielce, Poland
Bibliografia
  • [1] big.LITTLE Processing with ARM Cortex™-A15 & Cortex-A7, ARM Holdings, September 2013, http://www.arm.com/files/ downloads/big.LITTLE_Final.pdf.
  • [2] Luo J., Jha N. K.: Low Power Distributed Embedded Systems: Dynamic Voltage Scaling and Synthesis. Proc. 9th Int. Conference High Performance Computing — HiPC 2002, Lecture Notes in Computer Science, vol. 2552, 2002, pp. 679-693.
  • [3] Hartmann S., Briskorn D.: A survey of variants and extensions of the resource-constrained project scheduling problem. European journal of operational research: EJOR. Amsterdam: Elsevier, Vol. 207., 1 (16.11.), pp. 1-15 (2010).
  • [4] Xiang Li,Lishan Kang,Wei Tan: Optimized Research of Resource Constrained Project Scheduling Problem Based on Genetic Algorithms. Lecture Notes in Computer Science, Vol. 4683, 2007, pp. 177-186.
  • [5] Hossein Zoulfaghari, Javad Nematian, Nader Mahmoudi, and Mehdi Khodabandeh: A New Genetic Algorithm for the RCPSP in Large Scale. Int. J. Appl. Evol. Comput. 4, 2 (April 2013), 29-40.
  • [6] Van de Vonder S., Demeulemeester E. L., Herroelen W.S.: A classification of predictive-reactive project scheduling procedures. Journal of Scheduling 10 (3) (2007) 195–207.
  • [7] Al-Fawzan M., Haouari M.: A bi-objective model for robust resource constrained project scheduling. International Journal of Production Economics 96 (2005) pp.175-187.
  • [8] Michalewicz Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag Berlin Heidelberg, 1996.
  • [9] Koza J. R., Poli R.: Genetic Programming. In Edmund Burke and Graham Kendal, editors: Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques. Chapter 5. Springer, 2005.
  • [10] Deniziak S., Ciopiński L., Pawiński G.: Design of Real-Time Computer-Based Systems using Developmental Genetic Programming. In Handbook of Genetic Programming Applications, eds. Amir H. Gandomi, Amir H. Alavi, and Conor Ryan, Springer, 2015, in print.
  • [11] Sapiecha K., Ciopiński L., and Deniziak S.: An application of developmental genetic programming for automatic creation of supervisors of multi-task real-time object-oriented systems. IEEE Federated Conference on Computer Science and Information Systems (FedCSIS), 2014.
  • [12] Deniziak S. and Ciopiński L.: Synthesis of Power Aware Adaptive Schedulers for Embedded Systems using Developmental Genetic Programming. IEEE Federated Conference on Computer Science and Information Systems (FedCSIS), 2015.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13f6986d-d8b4-4ff5-a1ad-3a684057dc9b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.