PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improving ROCs of Constant False Alarm Coded Anti-collision Radar in Very Noised Cases

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of Constant False Alarm Coded Anticollision Radar (CFACAR) is very interesting in automotive environment. Due to the orthogonality properties of used codes this system is most robust to multi-user interferences. The actual version of the receiver called in this paper Single Correlation Receiver (SCR), is not able to detect the targets in very low input Signal to Noise Ratio (SNR). To resolve this problem, we present a new receiver called Averaging Correlation Receiver (ACR), that computes the average of the M later correlations. Then, we developed the expression of detection and false alarm probabilities for the new receiver in mono and multi-user scenarios. These probabilities are used to plot the new Receiver Operating Characteristics (ROCs). They are drawn for different values of input SNR and length M of ACR. There is a suitable value of M, according to some equation, that can be taken to have a good detection (ROCs more perfect). Also, we found that for a fixed SNR, we must increase sufficiently the length M but it is possible only for low relative velocity of the target. For a velocity of 5 K m/h with M = 1055, we can lessen the value of the SN R until we reach SN R = – 45 dB.
Twórcy
autor
  • Department Electronics, Informatics and Telecommunications, École Nationale des Sciences Appliquées, ENSAO, Morocco
autor
  • Institut dÉlectronique de Microelectronique et de Nanotechnologie, University of Valenciennes, France
autor
  • Department Electronics, Informatics and Telecommunications, École Nationale des Sciences Appliquées, ENSAO, Morocco
autor
  • Department Informatics and Telecommunications, Univ. Alger, Algeria
  • Department Electronics, Informatics and Telecommunications, École Nationale des Sciences Appliquées, ENSAO, Morocco
  • Institut dÉlectronique de Microelectronique et de Nanotechnologie, University of Valenciennes, France
Bibliografia
  • [1] P. Seiler, B. Song, and J. K. Hedrick, “Development of a collision avoidance system,” Development, vol. 4, pp. 17–22, 1998.
  • [2] A. Menhaj, “Études de systèmes anti-collision basés sur les techniques radar pour véhicules routiers,” PhD thesis, University of Valenciennes (In French), December 1996.
  • [3] J. Assaad, A. Menhaj, N. Haese, and C. Bruneel, “Signal processing study for an fmcw collision avoidance radar system,” Signal processing, vol. 61, no 1, pp. 24–33, Aout 1997.
  • [4] B. Frémont, A. Menhaj, P. Deloof, and M. Heddebaut, “A cooperative collision avoidance and communication system for railway transports,” 3rd IEEE Conference on intelligent transportation systems, Dearborn, October 2000.
  • [5] J. M. Allebach, R. M. Narayanan, B. Hoe, and S. P. Broderick, “Bistatic and multistatic target identification for through-wall radar imaging,” in SPIE Defense+ Security, pp. 94610G–94610G, International Society for Optics and Photonics, 2015.
  • [6] I. Cohen, R. Elster, and N. Levanon, “Good practical continuous waveform for active bistatic radar,” IET Radar, Sonar & Navigation, 2015.
  • [7] L. Anitori, M. Otten, W. van Rossum, A. Maleki, and R. Baraniuk, “Compressive cfar radar detection,” in Radar Conference (RADAR), 2012 IEEE, pp. 0320–0325, May 2012.
  • [8] J.-J. Lin, Y.-P. Li, W.-C. Hsu, and T.-S. Lee, “Design of an fmcw radar baseband signal processing system for automotive application,” SpringerPlus, vol. 5, no. 1, pp. 1–16, 2016.
  • [9] Y. Kwon, R. Narayanan, and M. Rangaswamy, “Multi-target detection using total correlation for noise radar systems,” Aerospace and Electronic Systems, IEEE Transactions on, vol. 49, pp. 1251–1262, APRIL 2013.
  • [10] C. Fischer, H. L. Blocher, J. Dickmann, and W. Menzel, “Robust detection and mitigation of mutual interference in automotive radar,” in Radar Symposium (IRS), 2015 16th International, pp. 143–148, IEEE, 2015.
  • [11] S. Li and G. Bi, “Improved spectrum sensing method for cognitive radio based on time domain averaging and correlation,” in The Proceedings of the Second International Conference on Communications, Signal Processing, and Systems, pp. 1229–1237, Springer, 2014.
  • [12] C.-P. Lai and R.M. Narayanan, “Ultrawideband random noise radar design for through-wall surveillance,” Aerospace and Electronic Systems, IEEE Transactions on, vol. 46, no. 4, pp. 1716–1730, 2010.
  • [13] Z. Zhang, Z. Lu, Q. Chen, X. Yan, and and Li Rong Zheng, “Code division multiple access/pulse position modulation ultra-wideband radio frequency identification for internet of things: concept and analysis,” International Journal of Communication Systems, vol. 25, pp. 1103–1121, September 2012.
  • [14] E. Takeuchi, A. Elfes, and J. Roberts, “Localization and place recognition using an ultra-wide band (uwb) radar,” Field and Service Robotics, vol. 105, pp. 275–288, 2015.
  • [15] M. Andres, W. Menzel, H.L. Bloecher, and J. Dickmann, “Detection of slow moving targets using automotive radar sensors,” Microwave Conference (GeMiC), 2012 The 7th German, pp. 1–4, 2012.
  • [16] F. Muller, S. Benesch, D. Steinbuch, T. Walter, and R. Weigel, “Mitigation of weak targets’ masking due to nonlinearities in chirp sequence fmcw automotive radar at 77 ghz,” in 2015 Asia-Pacific Microwave Conference (APMC), vol. 3, pp. 1–3, IEEE, 2015.
  • [17] J. Zhang and R. Bai, “Research of fmcw for perfect binary sequences pairs,” Advances in Mechanical and Electronic Engineering, vol. 178, pp. 21–27, 2013.
  • [18] J. Zaidouni, A. Rivenq-Menhaj, K. Ghoumid, A. El Moussati, and P. Deloof, “Roc performances of constant false alarm coded anticollision radar in multi-user environment,” International Journal of Wireless Information Networks, vol. 22, no. 4, pp. 369–385, 2015.
  • [19] X. Yin and M. Wang, “Research on safety distance mathematical model of pro-active head restraint in rear-end collision avoidance system,” International Journal of Security and Its Applications, vol. 9, no. 1, pp. 347–356, 2015.
  • [20] L. Sakkila, P. Deloof, Y. Elhillali, A. Rivenq, and S. Niar, “A real time signal processing for an anticollision road radar system,” Vehicular Technology Conference, 2006. VTC-2006 Fall. 2006 IEEE 64th, pp. 1–5, September 2006.
  • [21] L. Douadi, P. Deloof, and Y. Elhillali, “Real time implementation of reconfigurable correlation radar for road anticollision system,” in Industrial Technology, 2008. ICIT 2008. IEEE International Conference on, pp. 1–7, IEEE, 2008.
  • [22] P. traduit par J. Maurein, “Probabilités, analyse fréquentielle, information, théorie du radar,” Eyrolles, Paris, 1980.
  • [23] S.-H. Jeong, H.-Y. Yu, J.-E. Lee, J.-N. Oh, and K.-H. Lee, “A multibeam and multi-range radar with fmcw and digital beam forming for automotive applications,” Progress In Electromagnetics Research, vol. 124, pp. 285–299, 2012.
  • [24] H. Rohling and C. Möller, “Radar waveform for automotive radar systems and applications,” in Radar Conference, 2008. RADAR’08. IEEE, pp. 1–4, IEEE, 2008.
  • [25] B. Li and A. P. Petropulu, “Distributed mimo radar based on sparse sensing: Analysis and efficient implementation,” Aerospace and Electronic Systems, IEEE Transactions on, vol. 51, no. 4, pp. 3055–3070, 2015.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13f657b7-2c5a-41d5-918b-008dc0e8c2c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.