PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mesoscale Modeling of Complex Microfluidic Flows

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The mesoscale description of multiphase flow in a typical Lab-chip diagnostic device is presented in actual article. The mesoscopic lattice Boltzmann method, which involve evolution equations for the single particle distribution function, was applied for the modeling of complex microfluidic flows. The general D2Q9 lattice Boltzmann formulation, considered multiphase flows, was developed. Three types of boundary conditions were used for the mesoscopic modeling: “ghost-fluid”, “bounce-back” and “periodic boundaries”. Traditional Dirichlet and Neumann macroscopic boundary conditions were transformed into mesoscopic lattice formulations. Algorithm of fluid flow solution, based on BGK single-relaxation-time scheme was proposed and implemented. The scaling procedure was used for physical parameters convertion into non-dimensional units. Simulation procedure was tested on a fluid flow with single solid particle. The final results showed good consistence with fundamental flow phenomena.
Słowa kluczowe
Twórcy
autor
  • Department of Computer-Aided Design Systems, Lviv Polytechnic National University; 79013, Lviv, Bandery st. 12
Bibliografia
  • 1. Aidun C.K. and Clausen J.R. 2010. Lattice-Boltzmann Method for Complex Flows. Annual Review of Fluid Mechanics, Vol. 42, 439-472.
  • 2. Ahn C.H. and Choi J.W. 2007. Microfluidics and Their Applications to Lab-on-a-Chip. Springer Handbook of Nanotechnology, 523-548.
  • 3. Bhatnagar P.L., Gross E.P. and Krook M. 1954. A model for collision processes in gases. Physical Review, Vol. 94, Nr 3, 511-525.
  • 4. Cercignani C. 1988. The Boltzmann Equation and Its Applications. Ser. Applied Mathematical Sciences, Vol. 67, Springer, New York, 455.
  • 5. Chen S. and Doolen G.D. 1998. Lattice Boltzmann method for fluid flow. Annual Review of Fluid Mechanics, Vol. 30, 329-364.
  • 6. Chin C.D., Linder V. and Sia S.K. 2012. Commercialization of microfluidic point-of-care diagnostic devices. Lab on a Chip, Issue 12, 2118-2134.
  • 7. Fedosov D.A. and Karniadakis G.E. 2009. Tripledecker: Interfacing atomistic-mesoscopic-continuum flow regimes. Journal of Computational Physics, Vol. 228, 1157–1171.
  • 8. Gad-El-Hak M.2006. Gas and liquid transport at the microscale. Heat Transfer Engineering, Vol.27, Nr 4, 13–29.
  • 9. Glatzel T., et.al. 2008. Computational fluid dynamics (CFD) software tools for microfluidic applications – A case study. Computers & Fluids, Vol. 37, 218–235.
  • 10. Goranovic G. and Bruus H. 2003. Simulations in Microfluidics. Ser. Microsystem Engineering of Lab-on-a-Chip Devices, Wiley-VCH Verlag, Weinheim, Germany, 258.
  • 11. He X. and Luo L.S. 1997. Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation. Physical Review E, Vol. 56, Nr 6, 6811-6817.
  • 12. He X. and Luo L.S. 1997. Lattice Boltzmann model for the incompressible Navier–Stokes equation. Journal of Statistical Physics, Vol. 88, Nr 3-4, 927-944.
  • 13. Ho C.F. et.al. 2009. Consistent Boundary Conditions for 2D and 3D Lattice Boltzmann Simulations. Computer Modeling in Engineering & Sciences, Vol. 44, Nr 2, 137- 155.
  • 14. Hu G. and Li D. 2007. Multiscale phenomena in microfluidics and nanofluidics. Chemical Engineering Science, 62, Nr 13, 3443–3454.
  • 15. Kalweit M. and Drikakis D. 2011. Multiscale simulation strategies and mesoscale modelling of gas and liquid flows. IMA Journal of Applied Mathematics, Vol. 76, Nr. 5, 661-671.
  • 16. Kao P.H. and Yang R.J. 2008. An investigation into curved and moving boundary treatments in the lattice Boltzmann method. Journal of Computational Physics, Vol. 227, Nr 11, 5671–5690.
  • 17. Lallemand P. and Luo L.-S. 2003. Lattice Boltzmann method for moving boundaries. Journal of Computational Physics, Vol. 184, 406-421.
  • 18. Matviykiv O. et al. 2014. Multiscale Flow Model for Simulation of Biofluidic Mixtures in Lab-Chip Devices, Proc. of the 21st Int. Conf. “Mixed Design of Integrated Circuits & Systems” (MIXDES’2014), Lublin, Poland, 89-92.
  • 19. Mohamad A.A. 2011. Lattice Boltzmann Method. Fundamentals and Engineering Applications with Computer Codes, Springer, London, 178.
  • 20. Shan X. and Chen H. 1993. Lattice Boltzmann model for simulating flows with multiple phases and components. Physical Review E, Vol. 47, No. 3, 1815-1820.
  • 21. Steinhauser M.O. 2008. Computational Multiscale Modeling of Fluids and Solids. Theory and Applications, Springer-Verlag, Berlin, 427.
  • 22. Succi S. 2001. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford, University Press, 304.
  • 23. Wagner A.J. and Pagonabarraga I. 2002. Lees- Edwards boundary conditions for lattice Boltzmann. Journal of Statistical Physics, Vol. 107, Nr 1, 521-537.
  • 24. Whitesides G.M. 2006. Overview The origins and the future of microfluidics. Nature, Vol. 442, Nr 7101, 368-373.
  • 25. Wolf-Gladrow D.A. 2000. Lattice-Gas Cellular Automata and Lattice Boltzmann Models: an introduction. Ser. Lecture Notes in Mathematics, Vol. 1725, Springer-Verlag, Berlin, 314.
  • 26. Ziegler D.P., 1993. Boundary conditions for lattice Boltzmann simulations. Journal of Statistical Physics, Vol. 71, 1171-1177.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13f03ed2-8f82-47f8-bcee-78bacad01404
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.