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Ab st ract .  The mesoscale description of multiphase flow in a 
typical Lab-chip diagnostic device is presented in actual 
article. The mesoscopic lattice Boltzmann method, which 
involve evolution equations for the single particle distribution 
function, was applied for the modeling of complex 
microfluidic flows. The general D2Q9 lattice Boltzmann 
formulation, considered multiphase flows, was developed. 
Three types of boundary conditions were used for the 
mesoscopic modeling: “ghost-fluid”, “bounce-back” and 
“periodic boundaries”. Traditional Dirichlet and Neumann 
macroscopic boundary conditions were transformed into 
mesoscopic lattice formulations. Algorithm of fluid flow 
solution, based on BGK single-relaxation-time scheme was 
proposed and implemented. The scaling procedure was used 
for physical parameters convertion into non-dimensional units. 
Simulation procedure was tested on a fluid flow with single 
solid particle. The final results showed good consistence with 
fundamental flow phenomena.  
Key words:  multiphase, microfluidics, flow, mesoscale, 
modeling. 

INTRODUCTION 

A variety of miniaturized microfluidic devices for 
point-of-care diagnostic, biofluidic assays, biochemical 
synthesis and single cells analysis have been widely 
investigated and developed over the last two decades. 
These devices, called Lab-on-Chips, usually process 
multicomponent multiphase fluid mixtures, which flows 
under the hydrodynamic or electrokinetic forces in 
complex microchannels or microchambers [2, 6, 24]. 
The precise modeling of microfluidic Lab-chip flows 
requires an accurate description of multiphase and 
multicomponent interactions. Well developed classical 

Navier-Stoks flow models, which are based on the 
continuum theory, unfortunately can’t be applied for 
simulating Lab-chip devices [9]. Microfluidic flow 
models should consider various atomistic effects due to 
the presence of macroscopic time, length and energy 
scales in phases and components interactions. It is 
known, that in general applications atomistic models, 
based on quantum-mechanics and molecular dynamics, 
are not usable due to its extremely high computational 
costs. Thus, the majority of recent research activities in 
the field of microfluidic flows modeling was devoted to 
the new numerical techniques. 

The motion of a fluid mixtures can be described on 
three different levels (scales) – microscopic, mesoscopic 
and macroscopic [7, 14, 21]. At macroscopic scale – a 
Navier-Stokes partial differential equations are used. 
These equations can be solved by various numerical 
schemes like finite element method (FEM), finite 
volume method (FVM), etc. At microscale – on the 
contrary, a small particles movement simulate by 
molecular dynamics models. The governing is the 
Hamilton’s equation, where we have to identify the 
location and velocity of the each involved particle. At 
mesoscopic scale – which fills the gap between macro– 
and micro– scales, fluid is considers as a collection of 
pseudo-particles. There are two main approaches for 
fluidic flow modeling at mesoscale level [15]: 1) hybrid 
approach, which combine molecular and continuum 
models; and 2) simplified approach, which directly 
formulates mesoscale model from molecular by some 
transformations. One of the main mathematical methods 
for mesoscale models is lattice Boltzmann method, 
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which united microscopic models and mesoscopic 
kinetic equations [5]. This method uses the modified 
version of Boltzmann equation, which describes the 
meso-particles interactions on fixed lattices and directly 
simulates the fluids movement. The lattice Boltzmann 
method (LBM) was used here for the modeling a 
simulating of multiphase and multicomponent 
microfluidic flow mixtures. 

The difficulties associated with Lab-chips 
microfluidic flows modeling are related to a principal 
contradiction: the flow equations directed to the 
macroscopic variables – fluid density (ρ), pressure (p), 
temperature (T), velocity (u), while the fundamental 
mechanisms of the basic phenomena are related to the 
microscopic level. It is well known, that any continuum 
liquid is an ensemble of particles – molecules, ions and 
electrons with different positions (ri) and velocities (vi), 
which move under the influence of external forces 
(electromagnetic fields, pressure, gravity) and internal 
collision processes (brownian, ionization, charge 
exchange etc.). Unfortunately, “averaged” macroscopic 
parameters, which we observe at macroscale level, are 
averages over the distribution of particle velocities 
and/or positions. Thus, instead of hydrodynamic 
equations, more natural fluid flow description might 
involve evolution equations for the particle distribution 
function. Applying pseudo-particles instead of real 
molecules, one can create an alternative mesoscopic 
description of fluid flows, intermediate between 
microscopic and macroscopic worlds. 

 

 
a) 

 
b) 

 
c) 

Fig. 1. Different levels  
of fluid flow simulation: 
a) microscopic; b) 
mesoscopic; c) macroscopic 

 
As it is shown, lattice Boltzmann approach describe 

fluids as substance, consisted of fictive particles. Such 
particles perform consecutive propagation and collision 
processes like separate discreet molecules. Due to such 
particulate nature and local dynamics, mesoscale 
approach has plenty advantages over classical 
continuum models, especially in case of complex 
boundaries, multiphase interactions and in modern 
tendencies of the parallel calculations. The physics of 
microfluidics flow and fluid properties can be accurately 

incorporated into the LBE method, even more accurate 
than in Navier-Stokes equations [22]. Typical 
macroscopic parameters, like density ρ and velocity u 
can be easily calculated as soon as LBE solution will be 
obtained. Besides, it is particularly suitable for modeling 
various surface and interfacial phenomena, multiphase 
bio-flows and porous media flows, typical in 
microfluidics [1, 8]. 

MATERIALS AND METHODS 

The kinetic Boltzmann equation was used to 
describe the temporal and spatial variation (evolution) of 
the particle probability distribution function. It represen-
ts the expected mass density of particles located at posi-
tion r, moving with average velocity v at time t [4, 22]: 

 k
k

k k

Ff f fv f
t r m v

  
   

  
,                (1) 

where:  f r , ,t  – the distribution function of single-
particle position and momentum; F – external bulk force 
giving rise to the acceleration a = F/m; m – the mass of 
a particle. 

Here, at the left-hand side: the first term represents 
the explicit velocity of the function f variation in time, 
the second – gives the spatial variation of function f 
according to particles movement, and the third – 
describes the effect of any force, acting on the particles. 
The right-hand side characterize the changes in 
distribution function, related to particles collisions. This 
part is highly non-linear, as it depends on actual value of 
distribution function and on inter-particle forces. 
Original Boltzmann collision operator Ω(f) is extremely 
complex, and usually replaced by a simpler model for 
computational work [3]. 

In the Boltzmann , see Eq. (1), the main unknown is 
mass density distribution function f. In 3D space it 
depends on seven independent variables: three 
coordinates, three micro velocity components and time. 
By using discrete working space into regular lattice, 
where the particles may have only certain number of 
allowed velocities q, the number of independent 
variables can be reduced to four. As a result of such 
reduction, at any given time each particle may have a 
discrete velocity from the set {v0, v1, ... , vq−1}. Then the 
Boltzmann equation can be rewritten: 
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, (2) 

where: i – node index in discrete cell, fi ≡ f(r,vi,t), and f ̃
is a shorthand for the vector (f0, f1, ..., fq−1)T. The 
continuous operator Ω(f) is replaced by its discrete 
analog Ωi(f)̃, which includes summations. 

The solution of the Boltzmann equation defines the 
macroscopical fluid variables through the velocity 
moments of f. The Boltzmann equation has very high 
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mathematical complexity and need to be linearized and 
simplified. Besides, instead of direct numerical solution, 
it was proposed to imitate the evolution of particle 
distribution function  f r,v,t  over the discretized 
lattice space. So, in an elementary volume dr pseudo-
particles move chaotically or under some external 
forces, collide with each other and change its original 
speed. Applying basic conservation laws and Chapman-
Enskog expansion for the elementary volume dr, the 
change in the distribution function was written [25]: 

 3 3 3 3
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,                         (3) 

where: F – external body force, m – particle mass,  
dJcoll – change in the number of particles due to 
collisions. 

According to the Le Chatelier – Brown principle, in 
a slight deviation of the physical system f from the 
stable equilibrium f0 ( |f-f0|<<f0 ), appear internal forces 
that are trying to return the system to equilibrium. In a 
simplest approximation, these forces are proportional to 
the deviation: 

 0
1df f f

dt
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where: τ – relaxation time or the rate at which f approaches 
its equilibrium state. The minus indicates that the response 
of the system on perturbations lead it to equilibrium. In this 
expression, as an equilibrium function, can be used local 
Maxwellian eq Mf f , which equals: 
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where: ρ – particles density, m – particle mass, D – 
space dimension, v – particle microscopic speed, u – 
macroscopic fluid velocity, kB Boltzmann constant. 

By merging Eq. (3-5), and applying standard 
Bathar-Gross-Krook (BGK) collision approximation, 
where the collisions are considered as a linear process 
with single relaxation time model (SRT), the final lattice 
Boltzmann equation was obtained [3]: 
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Rewriting this equation in discrete mode, the 
evolution of the distribution function, which includes 
external body force, was obtained: 
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where: fi – related to the mass of particles, that moves 
from actual position in the direction i in one time step. 

The left-hand-side described a streaming step, and the 
right-hand-side – a collision step, which relaxes to its 
equilibrium value   ,eq

if u  with relaxation time τ. 
Here fi

eq depends on the macroscopic density and 
velocity at local domain coordinates and time. This 
equation don’t define which state should be used for 
simulation: fi

eq – in the point (r + vi∆t) at the time 
(t + Δt) or in the point (r) at the time (t). According to 
classical computational fluid dynamics experience, it’s 
better to use the up-wind calculation scheme, means: 
position (r + vi) at time (t + Δt) [10].  

As far as the collision process involves calculation 
of body forces F or other non-linear values, an 
intermediate step between streaming and collision 
should be inserted. Thus, the evolution equation (7) is 
decomposed in two steps: collision and streaming steps 
[19]: 

 collision:  
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 streaming:  
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were: 
i
tf  depicts function value in moment t, when 

particles that came to the node in the direction i, but has 
not yet collide with other arrived particles, fi is labeled a 
post-propagation or pre-collision population, and fi

t(r,t) 
– a post-collision or pre-propagation population. Both 
steps can be schematically presented as following:  
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a)                                       b) 

Fig. 2. Schematic representation of the a) streaming step, 
b) collision step. 

 
It can be seen, that in Boltzmann’s elementary 

node there can be either 0 or 1 pseudo-particle, moving 
at a given speed. After a time interval Δt, each particle 
will move in the direction of a nearby node (streaming 
step). If several particles from different directions come 
into one node, they collide and change their speed 
according to collision rules (collision step). The 
collision step is completely local – it involves only the 
nearest neighbor nodes: the post-collision particles fi

t 
move to the next node according to their discrete 
velocity set. As to the streaming step – it affects 
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neighbor nodes, but it is uniform and requires regular 
computational efforts.  

By calculating local equilibrium distribution and 
body forces, the collision step executes and new set of fi 
components at each lattice node. Then, particles with fi 
components stream into next neighboring lattices. Both – 
streaming and collision steps sequentially alternates. 
Appropriate collision rules provides conservation for 
number/mass, momentum and energy, and the results 
satisfy continuous Navier-Stokes macroscopic equations. 

In case of multiphase fluid flow, Shan and Chen 
have been formulated original algorithm, where a set of 
n-discretized LBE should be solved, where each fluid is 
represented by own equation [1, 20]. Thus, discretized 
Eq. (7) for the n-th fluid components looks like: 
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where: fi
(n) , τ(n) – are traditional single particle 

distribution function and single relaxation time for n-th 
fluid component.  

The LBM simulation of multi-phase and multi-
component transformations can be implemented through 
calculation of phase boundaries, emerging in the bulk 
microfluidic mixture. To describe the equation of state, 
which allows such transitions, it is necessary to 
introduce forces acted on the mixture components in the 
neighboring nodes. These forces can also provide the 
surface tension at the interface between different phases. 
As far as several fluids/phases may constitute the node 
component, this ambiguity will be solved according to 
the measurable dynamics – the node belongs to the fluid, 
which has the largest mass contribution. 

General representative of microfluidic Lab-chip 
usually contain: injectors, junctions, microchannels, 
mixers, reactors, separators, filters, etc. Typical principal 
scheme of such device for diagnostic purposes is shown 
on Fig. 3 [18]. Mesoscale flow model can be applied in 
all important regions of Lab-chip device, where complex 
physical and chemical effects appear. Here, let’s 
consider Ψ-junction (mixer) at the entrance region, 
where each microchannel input brings different 
components for multiphase fluid mixture. 

The size of this device is 65x35 mm. The typical 
size for input microchannels can vary within 50..500 
microns, depending on the size of bio-particles and 
contaminants. The length of input Ψ-mixer is up to 2..5 
mm. The cross-sections of microchannels usually have 
rectangular (square) or semicircular shape. Each type of 
channel has appropriate resistivity parameter, which 
influence on calculation domain:  

3
12 128

rect circ
L LR ; R DH B

    ,                    (11) 

where: Rrect , Rcirc – microfluidic resistance for 
rectangular and semicircular shapes, μ – dynamic 
viscosity of fluid mixture; L, H, B, D – length, height, 
width and diameter of the microchannel. 

In order to simulate flow effects in a fluid 
mixture by LBM, a special discretization procedure for 
selected calculation domain should be conducted. Let’s 
consider, that fluid processes and transformations at 
income microchannels before Ψ-mixer are less 
important. Also, 2D domain was chosen for test 
calculations. These simplifications allow to take only 
rectangular-body part for simulation microchannel Ψ-
mixer. The LBM workspace discretization is executed 
by creating uniformly located spatial nodes and a set of 
allowed velocity vectors. Each velocity vector points on 
possible propagation directions, arises after particles 
collision. Besides, it contains a zero vector, which 
describes particles that do not stream and remains in a 
node. The set of nodes, which outlines the allowed 
velocity vectors, created an elementary Boltzmann 
lattice. By applying parallel transformations on the base 
of Galilean invariance principle, this lattice can be 
extended on the whole workspace and form required 
computational grid. That’s why, the corresponding 
equilibrium distribution function and the related 
coefficients could be derived only after a specific lattice 
scheme is choose. Here, the D2Q9 lattice scheme was 
selected for 2D fluid flow in the ψ-junction. Nine 
discrete velocity vectors for the D2Q9 lattice Boltzmann 
scheme is shown below in Fig. 4, and the values of 
corresponding weight factors for calculating equilibrium 
distribution function are given in the Table 1. 
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Fig. 3. Principal scheme of Lab-chip diagnostic device [18] 
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Fig. 4. D2Q9 lattice Boltzmann scheme with discretized 
velocity vectors 
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Table 1. Velocity and weight parameters for D2Q9 scheme. 

Directions Elementary vectors (ei) Lattice velocities (ci) Lattice weights (wi) 

i=0 (0,0) сi = 0 4/9 
i=1,2,3,4 (1,0), (0,1), (-1,0), (0,-1) сi = сr 1/9 
i=5,6,7,8 (1,1), (-1,1), (-1,-1), (1,-1) сi = сr√2 1/36 
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a)   b)       c)  

Fig. 5. LBM boundary types for mesoscopic fluid flow implementation: 
a) ghost fluid nodes; b) bounce-back scheme; c) periodic boundary 

 
The value of nonzero velocity components is 

equal to the distance traveled by a mesoparticle along a 
certain elementary axis during one time step. In general, 
the velocities ci are equal to the relation of lattice size δri 
to the time step δt: i ic r t   . From other side, the 
speeds in lattice Boltzmann simulation are related to the 
speed of sound. Theoretically, the discrete time unit can 
be calculated as ∆t = ∆r/cs, where cs is the speed of 
sound in the fluid. Besides, the choice of lattice velocity 
should keep the restriction between the macroscopic 
velocity u and the sound speed cs : u<<cs – in most 
calculations this relation fits 0.01 ≤ cs/u ≤ 0.1. In case, 
when cs/u ≈ 0.1, the time step Δt is equal: ∆t = 0,1∆r/|u|. 

The next stage in LBM is to define initial and 
boundary conditions in ψ-junction domain. Discussions 
of various boundary types can be found in the literature 
[13, 26]. Three types of boundary schemes were used in 
actual mesoscopic modeling – “ghost-fluid”, “bounce-
back” and “periodic boundaries”, see Fig. 5. These types 
were chosen for their simplicity and satisfying accuracy.  

In the “ghost-fluid” scheme two types of nodes 
are defined: interior fluid points are inside a solution 
domain, and ghost-fluid points are outside the solution 
domain, mainly inside solid microchannel walls or 
inside solid particles, which moves in a fluid. Thus, the 
microchannel solid boundaries lays in the middle 
between fluid interior nodes and ghost exterior nodes. 
The ghost nodes are also used in bounce-back boundary 
scheme for creating distribution functions at solid 
boundaries. According to the “bounce back” scheme, 
pseudo-particles comes towards the solid boundary and 
bounce back along incoming direction – definitely to the 
node from which they went out, but with opposite 
directions. The advantages of bounce-back condition is 

the fact, that it provides mass conservation in the 
simulation, and ensures no-slip and no-penetration up to 
2nd-order of accuracy. The last scheme – periodic 
boundary condition is used to close the system within 
the two opposite edges – like input and output are 
connected to each other. This allows to obtain seamless 
connection and provides global conservation of mass in 
the calculation area. 

Next, traditional Dirichlet and Neumann 
macroscopic boundary conditions should be transformed 
into mesoscopic conditions for LBM grid. As far as LB 
model deal with the velocity of fluid particles, main 
boundary conditions should be related to macroscopic 
velocity u. Once the local velocity values are computed, 
the single particle distribution function at each point, 
which streams according to chosen schemes, can be 
calculated. Generally, the Dirichlet condition postulates 
no-slip and no-penetration boundary. At first 
approximation, when boundaries lays between the fluid 
and ghost nodes, and assuming that velocity varies 
linearly from one node to another, the relation between 
adjacent node velocity ui , macroscopic wall velocity uw 
and ghost node velocity ug can be represented by 
arithmetic mean: 

2g w iu u u  .                      (11) 

As to inlet particle distribution function fi(0,0) – it can 
be simply calculated from known distribution functions 
within the flow domain, based on imposed macroscopic 
parameters for fluid flow velocity and density: 

     0 00, 0 0, 0 ,eq eq
i i if r t f r t f u       . 

 (12) 
This equilibrium distribution function fi

eq can be 
calculated through [11, 12]: 
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where: cs – lattice sound velocity. 
For Neumann condition, one could use a classical 

central-difference scheme: 
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To implement the boundary condition at the outlet 
(where neither velocity nor density is imposed), one can 
use the extrapolation of known distribution functions: 

     1, , 2 ,
2i i i i if r t f r c t t f r c t t         , (15) 

where: r – appropriate particle’s coordinate. 
All macroscopic hydrodynamic boundary conditions, 

which describes pressure, density, temperature and con-
centration parameters should be converted into appropriate 
expressions for the mesoscopic distribution functions. 

A schematic LBM grid of a rectangular microchan-
nel (mixer) with appropriate boundary conditions for 
velocity variable is shown on Fig. 6(a). In case of the 
presence of multiphase inclusions (gas bubbles, 
immiscible liquid drops, solid particles or soft 
agglomerates) in a fluid mixture, the moving boundary 
condition should be described on the edge of inclusions, 
see Fig. 6(b).  

There are several schemes for reflecting moving 
boundaries among components in multi-component fluid 
mixture [17, 23]. The most popular are: classical non-
slip bounce-back scheme (for solid particles), slip 
bounce-back scheme (for two immiscible liquids), 
bounce-back with modified collision operator (for fluid 
mixtures), bounce-back operation with non-equilibrium 
part of distribution function (for complex mixtures), 
bounce-back operation with Galilean transformation (for 

 universal approach), and others. In this research the 
modified collision operator, which fits the microfluidic 
Lab-chip environment most of all. For this reason, the 
LBM equation for agglomerates is modified by the 
“solid” area fraction γ in each nodal cell [16, 17]. 

Single particle distribution function in these 
nodes becomes: 

         ( ) ( ) ( ) ( )
( ), , 1 , ,n n n eq n

i i i i i in
tf r c t t t f r t f r t f r t f            
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where: β – is coefficient, that depends on the “solid” 
area fraction (γs) in each lattice node: 
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.                         (17)  

All boundary expressions should be formulated and 
applied in such way, that the relevant hydrodynamic 
moments recalculated from the distribution functions are 
consistent with the primary macroscopic hydrodynamic 
parameters. Thus, in LBM algorithm the macroscopic 
parameters should be recalculated and harmonized at 
grid nodes before each collision step. 

The major limitation of this LBM algorithm is the 
requirement of grid discretizing, which should comply 
to uniform square lattices. Several modifications were 
proposed in literature, like rectangular or stretched grids, 
multi-block grid, they do not receive extended 
application and most of LBM software tools works with 
regular square lattices. Besides, LBM simulation should 
be conducted entirely in lattice units, where time step, 
lattice step are of unit length. So, in order to guarantee 
the simulation consistent, all physical parameters need 
to be rescaled to non-dimensional form and then 
converted to LBM units, (Fig. 7). 

 

    
a)       b) 

Fig. 6. LBM discretizion grid of microfluidic microchannel domain:  
a) black dots – fluid domain; white dots – ghost fluid;  
b) fluid and solid LBM nodes in multiphase flow 
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Fig. 7. LBM scaling procedure 
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Fig. 8. LBM computational algorithm 

 
The overall solution procedure, allows the LBM 

fluid flow simulation, can be described by the following 
collide&stream algorithm, (Fig. 8).  

At first, the geometry of computational domain 
should be defined, and discretized grid (spatial step) 
according to selected lattice type (velocity scheme) must 
be formed. Next, appropriate time step, related to the 
incorporated fluid flow physics (number of fluid 
components and distribution functions) need to be 
calculated and verified according to ∆t = ∆r/c. As far as 

grid nodes and required distribution functions are 
known, an initialization procedure should set values for 
each fi

(n) in all lattice directions at each grid node. Initial 
boundary conditions should be included into 
initialization procedure as well according to Eq. (11-15). 
On this stage “collision step” should be executed and 
temporary (ready to stream) versions of n distribution 
functions at each node point for each lattice direction 
have to be calculated according to Eq. (8). Nodes, which 
are in touch with various boundaries, should correct 
their temporary distribution functions by applying 
appropriate bounce-back and/or periodic conditions, see 
Eq. (16). Next is “streaming step”, where the particle 
population advects in the direction of corresponding 
lattice velocity to the neighboring lattice node, see Eq. 
(9). After that, macroscopic flow variables (u, ρ) can be 
updated in each grid node by calculating distribution 
function moments. At last, time step need to be 
incremented and checked if it reached maximum value. 

Usually, the isothermal fluid flow can be 
characterized by Reynolds number: 

Re Du L



,                                     (18) 

where: LD – equivalent hydrodynamic diameter, LD = a – 
for microchannel with typical square cross-section (a – 
appropriate side). In LBM simulation procedure, the 
mesoscopic and macroscopic Re numbers should be 
equal [12]. This requirement allows to calculate the 
number of LBM nodes, and the appropriate size of LBM 
lattice.  

RESULTS AND DISCUSSION 

A numerical simulation of two-component fluid 
flow, which consists of liquid phase (water) and single 
solid particle was conducted in actual research (see 
Fig. 9). The microchannel dimensions were chosen as 
1.0x1.0x10.0 (mm). Reynolds number was estimated in a 
range Re = 0.1-10. At this research stage, solid particle 
was represented as a sphere with the radius r = 10-4 m 
and density ρ = 2.59x103kg/m3. Viscosity of the fluid µ 
was set to 10−3Pa s.  

 

X,Y = (0;0)

X,Y = (0;1) X,Y = (1;1)

X,Y = (10;0)

Uo=0.1mm/s

 
 
Fig. 9. LBM calculation domain 

 
Flow enters from the left boundary with a 

prescribed parabolic velocity and exits out the right 
boundary with a constant pressure Pout = 1,0 atm. The 
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top and bottom boundary are modeled as no-slip walls. 
In order to reduce calculation costs, the LMB domain 
was truncated to 500x100 lattices. The carrier fluid 
enters the domain with a Poiseuille velocity profile. 

LBM calculations were conducted to obtain the 
fluid velocity profile around solid particle and its 
position. The colorbar legend with appropriate velocity 
scale is shown at the right. The diameter of particle is 
much smaller than the domain size and, at the beginning, 
solid particle moves slower then surrounded fluid.  

The development of velocity profile can be 
presented by graphical screenshots, which were taken in 
different timestamps (see Fig. 11).  

 
Fig. 10. Fluid velocity profile around particle 

 

   
a) ∆tLBM = 200; b) ∆tLBM = 500; b) ∆tLBM = 1000; 

   

   
b) ∆tLBM = 3000; b) ∆tLBM = 5000; b) ∆tLBM = 10000; 

 
Fig. 11. Screenshots of simulated fluid velocity profile 
 

The velocity profile around particle is going to 
stabilized at ∆tLBM approach to 40000 LBM time steps. 
In areas, remote from particle, velocity profile returns 
back to initial Poiseuille flow. 

CONCLUSIONS 

In actual research the mesoscale lattice Boltzmann 
model of fluid flow was developed and simple 
numerical simulation experiment with single solid 
particle was implemented. No-slip, no-penetration and 
bounce-back boundary conditions were prescribed at 
each wall using the Ghost-fluid method. Although, 
mesoscopic LBM gives a remarkable possibility to 
simulate a broad variety of complex fluid phenomena 
within single computational procedure. Just small 
change in the original computational procedure allows 
significant changes in physics of domain. In further 
research solid particle will be replaced by immiscible 
fluid drop, like oil. Next, multiple particles with 
different sizes may be added and simulated fluid flow 
behavior. Different obstacles, external forces and non-
slip boundary conditions may be included to analyze 
mixing/separating possibilities.  

The most valuable advantages of LBM calculation 
procedure are: 1) Intrinsic linear scalability in parallel 
computing that can be efficiently solved, because the 
collision are calculated locally; 2) Easy dealing with 

arbitrarily complex geometries: geometric complexity of 
microfluidic channels is not a challenge, because of the 
simple solid moving and domain deformation; 3) 
Efficient inter-phase interaction handling for multiphase 
flow because phase interaction is inherently included in 
the particle collisions. 
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