PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The nonlinear oil–water two-phase flow behavior for a horizontal well in triple media carbonate reservoir

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Carbonate reservoir is one of the important reservoirs in the world. Because of the characteristics of carbonate reservoir, horizontal well has become a key technology for efficiently developing carbonate reservoir. Establishing corresponding mathematical models and analyzing transient pressure behaviors of this type of well-reservoir configuration can provide a better understanding of fluid flow patterns in formation as well as estimations of important parameters. A mathematical model for a oil-water two-phase flow horizontal well in triple media carbonate reservoir by conceptualizing vugs as spherical shapes are presented in this article. A semi-analytical solution is obtained in the Laplace domain using source function theory, Laplace transformation, and superposition principle. Analysis of transient pressure responses indicates that seven characteristic flow periods of horizontal well in triple media carbonate reservoir can be identified. Parametric analysis shows that water saturation of matrix, vug and fracture system, horizontal section length, and horizontal well position can significantly influence the transient pressure responses of horizontal well in triple media carbonate reservoir. The model presented in this article can be applied to obtain important parameters pertinent to reservoir by type curve matching.
Czasopismo
Rocznik
Strony
977--989
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
autor
  • School of Sciences, Southwest Petroleum University, Chengdu, China
  • State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, China
autor
  • Research Institute of Exploration and Development, Tarim Oilfield Company, PetroChina, Korla, China
autor
  • PetroChina Xinjiang Oilfield Company, Karamay, China
autor
  • School of Science, Southwest University of Science and Technology, Mianyang, China
Bibliografia
  • 1. Al-Ghamdi A, Ershaghi I (1996) Pressure transient analysis of dually fractured reservoirs. SPEJ 1(1):93–100 (SPE 26959-PA)
  • 2. Bourdet D, Gringarten AC (1980) Determination of fissure volume and block size in fractured reservoirs by type-curve analysis. In: SPE 9293-MS. Presented at the 55th annual fall technical conference and exhibition held in Dallas, Texas, 21–24 September. doi: 10.2118/9293-MS
  • 3. Cai M, Jia Y (2007) Dynamic analysis for pressure in limit conductivity vertical fracture wells of triple-porosity reservoir. Well Test. 16(5):12–15
  • 4. Camacho-Velázquez R, Vásquez-Cruz M, Castrejón-Aivar R (2005) Pressure transient and decline curve behaviors in naturally fractured vuggy carbonate reservoirs. SPE Reserv Eval Eng 8(2):95–112 (SPE 77689-PA)
  • 5. Corbett PWM, Geiger S, Borges L, Garayev M, Gonzalez J, Camilo V (2010) Limitations in the numerical well test modelling of fractured carbonate rocks, SPE 130252-MS. In: presented at Europec/EAGE, Barcelona, June
  • 6. De Swaan O (1976) Analytical solutions for determining naturally fractured reservoir properties by well testing. SPE J 16(3):117–122 (SPE 5346-PA)
  • 7. Gua F, Chalaturnyk R (2010) Permeability and porosity models considering anisotropy and discontinuity of coalbeds and application in coupled simulation. J Petroleum Sci Eng 73(4):113–131CrossRefGoogle Scholar
  • 8. Guo JJ, Wang HT, Zhang LH (2015) Transient pressure behavior for a horizontal well with multiple finite-conductivity fractures in tight reservoirs. J Geophys Eng 12(4):638–656CrossRefGoogle Scholar
  • 9. Izadi M, Yildiz T (2007) Transient flow in discretely fractured porous media. In: SPE 108190-MS. Paper Presented at the Rocky Mountain oil & gastechnology symposium held in Denver, Colorado, 16–18 AprilGoogle Scholar
  • 10. Jalali Y, Ershaghi I (1987) Pressure transient analysis of heterogeneous naturally fractured reservoirs. In: SPE 16341-MS. Paper Presented at the SPE California Regional Meeting held in Ventura, California, 8–10 AprilGoogle Scholar
  • 11. Jazayeri Noushabadi MR, Jourde H, Massonnat G (2011) Influence of the observation scale on permeability estimation at local and regional scales through well tests in a fractured and karstic aquifer (Lez aquifer, Southern France). J Hydrol 403(3–4):321–336CrossRefGoogle Scholar
  • 12. Jiang R, Xu J, Sun Z et al (2014) Rate transient analysis for multistage fractured horizontal well in tight oil reservoirs considering stimulated reservoir volume. Math Probl Eng 2014:1–11Google Scholar
  • 13. Kucuk F, Ayestaran L (1985) Analysis of simultaneously measured pressure and sandface flow rate in transient well testing (includes associated papers 13 937 and 14 693). J Pet Technol 37:323–334CrossRefGoogle Scholar
  • 14. Leveinen J (2000) Composite model with fractional flow dimensions for well test analysis in fractured rocks. J Hydrol 234(3–4):116–141CrossRefGoogle Scholar
  • 15. Li AF, Sun Q, Zhang D et al (2013) Oil-water relative permeability and its influencing factors in single fracture-vuggy. J China Univ Pet 37(3):98–102Google Scholar
  • 16. Lian PQ, Cheng LS, Liu LF (2011) The relative permeability curve of fractured carbonate reservoirs. Acta Petrolei Sin 32(6):1026–1030Google Scholar
  • 17. Ma X, Liu Z (2016) Predicting the oil production using the novel multivariate nonlinear model based on Arps decline model and kernel method. Neural Comput Appl 2016:1–13Google Scholar
  • 18. Ma X, Hu Y, Liu Z (2017) A novel kernel regularized nonhomogeneous grey model and its applications. Commun Nonlinear Sci Numer Simul 48:51–62CrossRefGoogle Scholar
  • 19. Nie R, Meng Y, Yang Z, Guo J, Jia Y (2011) New flow model for the triple media carbonate reservoir. Int J Comput Fluid Dyn. 25(2):95–103CrossRefGoogle Scholar
  • 20. Nie RS, Meng YF, Jia YL, Shang JL, Wang Y, Li JG (2012) Unsteady inter-porosity flow modeling for a multiple media reservoir. Acta Geophys 60(1):232–259CrossRefGoogle Scholar
  • 21. Ozkan E (1988) Performance of horizontal wells. Doctoral dissertation of Tulsa, University of Tulsa, pp 119–120Google Scholar
  • 22. Ozkan E, Raghavan R (1992) New solutions for well-test-analysis problems: part 1-analytical solutions. Int J Rock Mech Min Sci Geomech Abstr 29:A159–A160
  • 23. Popov P, Qin G, Bi L, Efendiev Y, Kang Z, Li J (2009) Multiphysics and multiscale methods for modeling fluid flow through naturally fractured carbonate Karst reservoirs. SPE Reserv Eval Eng 12(2):218–231 (SPE 105378-PA)
  • 24. Pulido H, Samaniego F, Rivera J (2006) On a well-test pressure theory of analysis for naturally fractured reservoirs, considering transient inter-porosity matrix, microfractures, vugs, and fractures flow. In: SPE 104076-MS. Paper presented at the first international oil conference and exhibition held in Mexico, 31 August
  • 25. Raghavan R (1993) Well test analysis. Prentice-Hall Inc., PTR, Englewood Cliffs, pp 23–25
  • 26. Rangel-German ER, Kovscek AR (2005) Matrixfracture shape factors and multiphase-flow properties of fractured porous media. In: SPE 95105-MS, presented at the SPE Latin American and Caribbean Petroleum Engineering Conference, 20–23 June, Rio de Janeiro, Brazil
  • 27. Stehfest H (1970) Algorithm 368: numerical inversion of Laplace transforms Commun. ACM 13:47–49
  • 28. Su Y, Zhang Q, Wang W et al (2015) Performance analysis of a composite dual-porosity model in multi-scale fractured shale reservoir. J Nat Gas Sci Eng 26:1107–1118
  • 29. Van-Everdingen AF (1953) The skin effect and its influence on the productive capacity of a well. J Pet Technol 5:171–176
  • 30. Wang Y, Yi Y (2017) Transient pressure behavior of a fractured vertical well with a finite-conductivity fracture in triple media carbonate reservoir. J Porous Media 20(8):1–16
  • 31. Wang HT, Zhang LH, Guo JJ (2013) A new rod source model for pressure transient analysis of horizontal wells with positive/negative skin in triple-porosity reservoirs. J Petrol Sci Eng 108:52–63
  • 32. Warren JE, Root PJ (1963) The behavior of naturally fractured reservoirs. SPE 426-PA. SPE J 3(3):245–255
  • 33. Wei M, Duan Y, Zhou X et al (2016) Pressure transient analysis for finite conductivity multi-staged fractured horizontal well in fractured-vuggy carbonate reservoirs. Int J Oil Gas Coal Eng 4(1–1):1–7
  • 34. Wu YS, Liu HH, Bodvarsson GS (2004) A triple-continuum approach for modeling flow and transport processes. J Contam Hydrol 73:145–179
  • 35. Wu YS, Ehlig-Economides C, Qin G, Kang Z, Zhang W, Ajayi B, Tao Q (2007) A triple continuum pressure transient model for a naturally fractured vuggy reservoir. In: SPE 110044-MS. Paper presented at the SPE annual technical conference and exhibition held in Anaheim, California, USA, 11–14, November
  • 36. Wu YS, Di Y, Kang ZJ, Fakcharoenphol P (2011) A multiple-continuum model for simulating single-phase and multiphase flow in naturally fractured vuggy reservoirs. J Pet Sci Eng 78(1):13–22
  • 37. Wu YH, Cheng LS, Huang SJ et al (2016) A practical method for production data analysis from multistage fractured horizontal wells in shale gas reservoirs. Fuel 186:821–829
  • 38. Wu K, Olson J, Balhoff MT et al (2017) Numerical analysis for promoting uniform development of simultaneous multiple-fracture propagation in horizontal wells. SPE Prod Oper 32:41–50
  • 39. Zhang DL, Zhang LH, Guo JJ et al (2015a) Research on the production performance of multistage fractured horizontal well in shale gas reservoir. J Nat Gas Sci Eng 26:279–289
  • 40. Zhang M, Yao J, Sun H et al (2015b) Triple-continuum modeling of shale gas reservoirs considering the effect of kerogen. J Nat Gas Sci Eng 24:252–263
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13ecd4fd-304c-45a1-a8bf-dd4b152f9194
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.