PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wave fields in the stratified fluid-saturated porous half-space induced by dislocation sources

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the wave fields induced by both tensile and shear displacement dislocations in stratified fluid-saturated porous media are computed by using the reflection and transmission matrix method. The components of the source discontinuity vector across the source plane to describe those tensile and shear faults are explicitly displayed by using the surface vector harmonics. Numerical examples for a two layer model subjected to tensile and shear dislocations are provided. From the waveforms of surface displacements, the arrivals of transmitted and converted PS and SP waves at the interface of the two layer model can be clearly observed.
Rocznik
Strony
435--449
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
  • Department of Mechanical Engineering University of Shanghai for Science and Technology Shanghai 200093, China
autor
  • Department of Mechanical Engineering University of Shanghai for Science and Technology Shanghai 200093, China
Bibliografia
  • 1. M.A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range, The Journal of the Acoustical Society of America, 28, 168–178, 1956.
  • 2. M.A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range, The Journal of the Acoustical Society of America, 28, 179–191, 1956.
  • 3. M.A. Biot, Mechanics of deformation and acoustic propagation in porous media, Journal of Applied Physics, 33, 1482–1498, 1962.
  • 4. M.A. Biot, Generalized theory of acoustic propagation in porous dissipative media, Journal of the Acoustical Society of America, 34, 1254–1264, 1962.
  • 5. R.K.N. Rajapakse, T.J. Senjuntichai, Dynamic response of a multi-layered poroelastic medium, Earthquake Engineering & Structural Dynamics, 24, 703–722, 1995.
  • 6. J.F. Lu, A. Hanyga, Fundamental solutions for a layered porous half space subject to a vertical point force or a point fluid source, Computational Mechanics, 35, 376–391, 2005.
  • 7. G. Lefeuve-Mesgouez, A. Mesgouez, G. Chiavassa, B. Lombard, Semi-analytical and numerical methods for computing transient waves in 2D acoustic/poroelastic stratified media, Wave Motion, 49, 667–680, 2012.
  • 8. P. Zheng, B. Ding, S.X. Zhao, D. Ding, 3D dynamic Green’s functions in a multi-layered poroelastic half-space, Applied Mathematical Modelling, 37, 10203–10219, 2013.
  • 9. P. Zheng, B. Ding, The generalized reflection and transmission matrix method for wave propagation in stratified fluid-saturated porous media, Transport in Porous Media, 102, 185–206, 2014.
  • 10. K. Aki, P.G. Richards, Quantitative Seismology, University Science Books, Sausalito, CA, 2002.
  • 11. M.A. Biot, General theory of three-dimensional consolidation, Journal of Applied Physics, 12, 155–164, 1941.
  • 12. E. Pan, Green’s functions in layered poroelastic half-spaces, International Journal for Numerical and Analytical Methods in Geomechanics, 23, 1631–1653, 1999.
  • 13. H. Takeuchi, M. Saito, Seismic surface waves, Methods in Computational Physics, 11, 217–295, 1971.
  • 14. P. Zheng, B. Ding, Body force and fluid source equivalents for dynamic dislocations in fluid-saturated porous media, Transport in Porous Media, 107, 1–12, 2015.
  • 15. B.L.N. Kennett, Elastic wave propagation in stratified media, Advances in Applied Mechanics, 21, 79–167, 1981.
  • 16. M. Bouchon, A simple method to calculate Green’s functions for elastic layered media, Bulletin of the Seismological Society of America, 71, 959–971, 1981.
  • 17. M.A. Biot, D.G. Willis, The elastic coefficients of the theory of consolidation, Journal of Applied Mechanics, 24, 594–601, 1957.
  • 18. F. Wenzlau, T.M. Müller, Finite-difference modeling of wave propagation and diffusion in poroelastic media, Geophysics, 74, T55–T66, 2009.
  • 19. P. Zheng, B. Ding, Potential method for 3D wave propagation in a poroelastic medium and its applications to Lamb’s problem for a poroelastic half-space, ASCE International Journal of Geomechanics, 16, 04015048, 2016.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13ec4e7c-9bca-49ed-b7fc-46c4c95af790
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.