Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Despite the development of laser processing, the mechanical cutting process is still widely used in the formation of electric steels that are very sensitive to thermal phenomena. However, proper process control is difficult due to the large number of factors determining the quality of the products. As a result, the quality of the cut edge is characterised by the presence of burrs, the removal of which increases the production costs. Due to their magnetic properties, these materials should not be exposed to excessive stresses and deformations. The article presents the possibilities of predicting the characteristic features of the cut edge as well as stress distributions in this area. Original shear-slitting finite element method (FEM) models were developed, the results of which were verified experimentally. The proposed method based on stress triaxiality analysis enables precise analysis of stress states in the cutting zone and the boundaries of the slip fracture transition in the separating fracture, as well as determining the method of material cracking. Variable control factors such as cutting clearance, rake angle of the upper knife, and cutting speed were taken into account in the models. Parametric analysis of the process was carried out and it was determined how the process parameters should be selected in order to obtain the appropriate quality of the product. The developed analysis results can be useful on production lines for proper process control.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
341--351
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Mechanical Engineering, Koszalin University of Technology, ul. Racławicka 15-17, 75-620 Koszalin, Poland
autor
- Faculty of Mechanical Engineering, Koszalin University of Technology, ul. Racławicka 15-17, 75-620 Koszalin, Poland
autor
- *Faculty of Mechanical Engineering, Koszalin University of Technology, ul. Racławicka 15-17, 75-620 Koszalin, Poland
Bibliografia
- 1. Jin SY, Pramanik A, Basak AK et al. Burr formation and its treat-ments—a review. International J of Adv Man Tech. 2020; 107: 2189–2210. https://doi.org/10.1007/s00170-020-05203-2
- 2. Ghadbeigi H, Al-Rubaye A, Robinson FCJ et al. Blanking induced damage in thin 3.2% silicon steel sheets. Prod Eng. 2020; 14: 53–64. https://doi.org/10.1007/s11740-019-00931-1
- 3. Arslan Y, Özdemir A. Punch structure, punch wear and cut profiles of AISI304 stainless steel sheet blanks manufactured using cryogeni-cally treated AISI D3 tool steel punches. Int J of Adv Man Tech. 2016; 87: 587–599. https://doi.org/10.1007/s00170-016-8515-6
- 4. Falconnet E, Makich H, Chambert J, Monteil G, Picart P. Numerical and experimental analyses of punch wear in the blanking of copper alloy thin sheet. Wear. 2012; 296: 598-606. https://doi.org/10.1016/j.wear.2012.07.031
- 5. Kurosaki Y, Mogi H, Fujii H. Importance of punching and workability in non-oriented electrical steel sheets. J of Mag and Magn Mat. 2008; 320: 2474–2480. https://doi.org/10.1016/j.jmmm.2008.04.073
- 6. Lewis N, Anderson P, Hall J, Gao Y. Power loss models in punched non-oriented electrical steel rings. IEEE Trans on Mag. 2016; 52 (5): 1-4. https://doi.org/10.1109/TMAG.2016.2530304
- 7. Liu Y, Wang Ch, Han H, Shan D, Guo B. Investigation on effect of ultrasonic vibration on micro-blanking process of copper foil. Int J of Adv Man Tech. 2017; 93: 2243-2249. https://doi.org/10.1007/s00170-017-0684-4
- 8. Boehm L, Hartmann C, Gilch I, Stoecker A, Kawalla R, Wei X, Hirt G, Heller M, Korte-Kerzel S, Leuning N et al. Grain size influence on the magnetic property deterioration of blanked non-oriented electrical steels. Materials. 2021; 14: 7055. https://doi.org/10.3390/ma14227055
- 9. Wilczyński W. Wpływ technologii na właściwości magnetyczne rdzeni maszyn elektrycznych. IEI Warszawa 2003 (in Polish).
- 10. Miyagi D, Miki K, Nakano M, Takahashi N. Influence of compressive stress on magnetic properties of laminated electrical steel sheets. IEEE Trans of Mag. 2010; 46: 318-321. https://doi.org/10.1109/TMAG.2009.2033550.
- 11. Naumoski H, Riedmüller B, Minkow A. Herr U. Investigation of the influence of different cutting procedures on the global and local mag-netic properties of non-oriented electrical steel. J of Mag and Magn Mat. 2015; 392: 126–133.https://doi.org/10.1016/j.jmmm.2015.05.031
- 12. Xiong X, Hu S, Hu K, Zeng S. Texture and magnetic property evolu-tion of non-oriented Fe-Si steel due to mechanical cutting, Jof Magn and Magn Mat. 2016; 401: 982-990. https://doi.org/10.1016/j.jmmm.2015.10.023
- 13. Leuning N, Steentjes S, Schulte M, Bleck W, Hameyer K. Effect of elastic and plastic tensile mechanical loading on the magnetic prop-erties of NGO electrical steel. J of Magn and Magn Mat. 2016; 417: 42-48. https://doi.org/10.1016/j.jmmm.2016.05.049
- 14. Wang X, Wang Z, Cui R, Li Sh. Influence of blanking process on the magnetic properties of non-oriented electrical steel lamination. J of Shan Jiao Tong Univ. 2019; 53(9): 1115-1121. https://doi.org/10.1109/TMAG.2018.2799839
- 15. Wang N, Golovashchenko S.F. Mechanism of fracture of aluminum blanks subjected to stretching along the sheared edge. J of Mat Proc Tech. 2016; 233: 142–160. https://doi.org/10.1016/j.jmatprotec.2016.02.022
- 16. Falconnet E, Chambert J, Makich H, Monteil G, Winter S, Nestler M, Galiev E, Hartmann F, Psyk V, Kräusel V, Dix M. Adiabatic blanking: Influence of clearance, impact energy, and velocity on the blanked surface. J of Man and Mat Proc. 2021; 5: 35.
- 17. Molitor D.A, Kubik C, Hetfleisch R.H, Groche P. Workpiece image-based tool wear classification in blanking processes using deep con-volutional neural networks. Prod Eng. 2022; 1-12. https://doi.org/10.1007/s11740-022-01113-2
- 18. Mucha J, Jaworski J. The quality issue of the parts blanked from thin silicon sheets. JMEPEG. 2017; 26: 1865–1877. https://doi.org/10.1007/s11665-017-2589-7
- 19. Toda H, Zaizen Y, Namikawa M, Shiga N, Oda Y, Morimoto S. Iron loss deterioration by shearing process in non-oriented electrical steel with different thicknesses and its influence on estimation of motor iron loss. IEEJ J of Ind Appl. 2014; 3 (1): 55-61. https://doi.org/10.1541/ieejjia.3.55
- 20. Omura T, Zaizen Y, Fukumura M, Senda K, Toda H. Effect of hard-ness and thickness of nonoriented electrical steel sheets on iron loss deterioration by shearing process. IEEE Trans on Magn. 2015; 51 (11). https://doi.org/10.1109/TMAG.2015.2443176
- 21. Schoppa A, Schneider J, Roth J.O. Influence of the cutting process on the magnetic properties of non-oriented electrical steels. J of Magn and Magn Mat. 2000; 215-216: 100-102. https://doi.org/10.1016/S0304-8853(00)00077-9
- 22. Rygal R, Moses A. J, Derebasi N, Schneider J, Schoppa A. Influence of cutting stress on magnetic field and flux density distribution in non-oriented electrical steels. J of Magn and Mag Mat. 2000; 215–216: 687–689. https://doi.org/10.1016/S0304-8853(00)00259-6
- 23. Subramonian S, Altan T, Campbell C, Ciocirlan B. Determination of forces in high speed blanking using FEM and experiments. J of Mat Proc Tech. 2013; 213: 2184-2190. https://doi.org/10.1016/j.jmatprotec.2013.06.014
- 24. Wang Z, Li S, Cui R, Wang X, Wang B. Influence of grain size and blanking clearance on magnetic properties deterioration of non-oriented electrical steel. IEEE Trans on Magn. 2018; 54 (5): 1–7. https://doi.org/10.1109/TMAG.2018.2799839
- 25. Winter K, Liao Z, Ramanathan R, Axinte D, Vakil G, Gerada C. How non-conventional machining affects the surface integrity and magnet-ic properties of non-oriented electrical steel. Mat and Des. 210. 2021. https://doi.org/10.1016/j.matdes.2021.110051
- 26. Smudde CM, D’Elia CR, San Marchi CW, Hill MR, Gibeling JC. Effects of residual stress on orientation dependent fatigue crack growth rates in additively manufactured stainless steel. Int J of Fat. 2023; 169: 107489. https://doi.org/10.1016/j.ijfatigue.2022.107489
- 27. Khatri N, Barkachary BM, Muneeswaran B, Al-Sayegh R, Luo X, Goel S. Surface defects incorporated diamond machining of silicon. Int J of Extr Man. 2020; 2(4): 045102. https://doi.org/10.1088/2631-7990/abab4a
- 28. Zhao Y, Wang S, Yu W, Long P, Zhang J, Tian W, Gao F, Jin Z, Zheng H, Wang C et al. Simulation and Experimental Study of Laser Processing NdFeB Microarray Structure. Micromachines 2023; 14: 808. https://doi.org/10.3390/mi14040808
- 29. Leuning N, Jaeger N, Schauerte M, Stöcker B, Kawalla A et al. Material design for low loss non-oriented electrical steel for energy efficient drives. Materials 2021; 14: 6588. https://doi.org/10.3390/ma14216588
- 30. Molitor DA, Kubik C, Hetfleisch RH, Groche P. Workpiece image-based tool wear classification in blanking processes using deep con-volutional neural networks. Prod Eng. 2022; 1-12. https://doi.org/10.1007/s11740-022-01113-2
- 31. Kamarul Adnan AA, Azinee SN, Norsilawati N, Izzul KAM. Analysis of the influence of the blanking clearance size to the burr development on the sheet of mild steel, brass and aluminium in blanking process. J of Ach in Mat and ManEng 2022;111(1):26-32. https://doi.org/10.5604/01.3001.0015.9093.
- 32. Dzidowski ES. Mechanizm pękania poślizgowego w aspekcie deko-hezji sterowanej metali. Wydawnictwo Politechniki Wrocławskiej. Wrocław 1990 (in Polish).
- 33. Gutknecht F, Steinbach F, Hammer T, Clausmeyer T, Volk W, Tek-kaya AE. Analysis of shear cutting dual phase steel by application of an advanced damage model, 21st European Conference on Fracture ECF21. 20-24 June 201. Catania Italy. Procedia Structural Integrity. 2016; 2:1700-1707. https://doi.org/10.1016/j.prostr.2016.06.215
- 34. Kułakowski M. Badania wpływu parametrów i warunków procesu cięcia mechanicznego na lokalne zmiany właściwości laserowanych blach elektrotechnicznych. Rozprawa doktorska. Politechnika Koszalińska. Koszalin 2023 (in Polish).
- 35. Kukielka L, Kulakowska A, Patyk R. Numerical modeling and simula-tion of the movable contact tool-worpiece and application in techno-logical processes. Jof Syst. Cyb and Inf. 2010; 8(3): 36-41.
- 36. Kukielka L. Nonlinear modeling for elasto/visco – plastic contact problem in technological processes, International Scientific IFNA – ANS Journal, Problems of non – linear Analysis in Engineering Sys-tems 2004;2:39-53.
- 37. Kałduński P, Kukiełka L. The numerical analysis of the influence of the blankholder force and the friction coefficient on the value of the drawing force. PAMM 2007; 7 (1): 4010045-4010046. https://doi.org/10.1002/pamm.200701059
- 38. Kałduński P, Kukiełka L. The sensitivity analysis of the drawpiece response on the finite element shape parameter. PAMM. 2008; 8 (1): 10725-10726. https://doi.org/10.1002/pamm.200810725
- 39. Johnson GR, Cook WH. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pres-sures. Eng Frac Mech. 1985; 21 (1): 31-48. https://doi.org/10.1016/0013-7944(85)90052-9
- 40. Rickhey F, Hong S. Stress triaxiality in anisotropic metal sheets—definition and experimental acquisition for numerical damage predic-tion. Materials. 2022; 15(11):3738. https://doi.org/10.3390/ma15113738
- 41. Bao Y, Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space. Int J of Mech Sci. 2004; 46: 81-98. https://doi.org/10.1016/j.ijmecsci.2004.02.006
- 42. Kuo SK, Lee WC, Lin SY, Lu CY. The influence of cutting edge deformations on magnetic performance degradation of electrical steel. 2014 17th International Conference on Electrical Machines and Systems (ICEMS) 2014; 3041-3046. https://doi.org/10.1109/ICEMS.2014.7014017
- 43. Cao H, Hao L, Yi J, Zhang X, Luo Z, Chen Sh et al. The influence of punching process on residual stress and magnetic domain structure of non-oriented silicon steel. J of Mag and Magnetic Materials. 2016; 406: 42–47. https://doi.org/10.1016/j.jmmm.2015.12.098
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13ea261e-458f-4b28-832f-bd886c334f32