Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the results of calculations of the hydrodynamic coefficients of the heave plate using RANSECFD (Reynolds-Averaged Navier-Stokes Equations - Computational Fluid Dynamic). The obtained values were confirmed by research results available in the literature and were used to draw new conclusions on the studied issue. The calculations were performed for a wide range of Keulegan Carpenter (KC) numbers from 0.15−6.2. Plates with different plate-diameter-to-cylinder-diameter ratios (Dp/Dc = [1.4;2;4;6]) were tested, and it was found that for a KC number < 2, the greatest damping occurs for plates with a Dp/Dc ratio > 4, while for a KC number > 4.5, the opposite situation occurs and one can observe a higher damping coefficient and a lower plate diameter ratio. The influence of holes evenly distributed in a circular array in the plate on the values of hydrodynamic coefficients was investigated; for a KC number < 2, they cause an increase in the damping coefficient, but they should be used on plates with a higher plate-diameter-to-cylinder-diameter ratio. Moreover, it was shown that in the case of the combined motion of heave + pitch, the obtained values of the damping coefficient are lower than in the case of isolated motion, and it was suggested that this could be prevented by using an additional vertical plane at the edge of the plate to prevent the vortices from sliding off the plate surface.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
38--49
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
- Institute of Naval Architecture, Gdańsk University of Technology, Gdańsk, Poland
autor
- Institute of Naval Architecture, Gdańsk University of Technology, Gdańsk, Poland
autor
- Institute of Naval Architecture, Gdańsk University of Technology, Gdańsk, Poland
Bibliografia
- 1. Tao L, Lim KY, Thiagarajan K. Heave response of classic spar with variable geometry. Journal of Offshore Mechanics and Arctic Engineering 2004. https://doi.org/10.1115/1.1643085.
- 2. Jang H-K, Park S, Kim M-H, Kim K-H, Hong K. Effects of heave plates on the global performance of a multi-unit floating offshore wind turbine. Renewable Energy 2019. https://doi.org/10.1016/j.renene.2018.11.033.
- 3. Assidiq FM, Paroka D, Habibi, Hidayatullah, Ramadan MFF. Influence of vertical plates on the pitching motion of a SPAR wind floater in waves climate change and ocean renewable energy. International Conference on Climate Change and Ocean Renewable Energy, 2023. https://doi.org/10.1007/978-3-031-26967-7_3.
- 4. Subbulakshmi A, Sundaravadivelu R. Heave damping of spar platform for offshore wind turbine with heave plate, Ocean Engineering 2016. https://doi.org/10.1016/j.oceaneng.2016.05.009.
- 5. Medina-Manuel A, Botia-Vera E, Saettone S, Calderon-Sanchez J, Bulian G, Souto-Iglesias A. Hydrodynamic coefficients from forced and decay heave motion tests of a scaled model of a column of a floating wind turbine equipped with a heave plate. Ocean Engineering 2022. https://doi.org/10.1016/j.oceaneng.2022.110985.
- 6. Rao MJ, Nallayarasu S, Bhattacharyya SK. Numerical and experimental studies of heave damping and added mass of spar with heave plates using forced oscillation. Applied Ocean Research 2021. https://doi.org/10.1016/j.apor.2021.102667.
- 7. Turner M, Wang L, Thiagarajan K, Robertson A. Heaveplate hydrodynamic coefficients for floating Offshore wind turbines – A compilation of data: Preprint. National Renewable Energy Laboratory, Golden, CO, 2024. NREL/CP-5000-87275.
- 8. Tao L, Dray D. Hydrodynamic performance of solid and porous heave plates. Ocean Eng 2008.
- 9. Wadhwa H, Thiagarajan KP. Experimental assessment of hydrodynamic coefficients of disks oscillating near a free surface. Proceedings of the ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering, Honolulu, Hawaii, USA, 2009.
- 10. Wadhwa H, Krishnamoorthy B, Thiagarajan KP. Variation of heave added mass and damping near seabed. Proceedings of the ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering, Shanghai, China, 2010.
- 11. Bezunartea-Barrio A, Fernandez-Ruano S, MaronLoureiro A, Molinelli-Fernandez E, Moreno-Buron F, Oria-Escudero J, Rios-Tubio J, Soriano-Gomez C, Valea-Peces A, Lopez-Pavon C, SoutoIglesias A. Scale effects on heave plates for semi-submersible floating offshore wind turbines: Case study with a solid plain plate. J Offshore Mech Arct Eng 2020.
- 12. Tian X, Tao L, Li X, Yang J. Hydrodynamic coefficients of oscillating flat plates at 0.15 ≤ KC ≤ 3.15. J Mar Sci Tech 2016.
- 13. Vu KH, Chenu B, Thiagarajan KP. Hydrodynamic damping due to porous plates. Proceedings of World Scientific and Engineering Academy and Society, Corfu, Greece, 2008.
- 14. Yang J, Tian X, Li X. Hydrodynamic characteristics of an oscillating circular disk under steady in-plane current conditions. Ocean Eng 2014.
- 15. Ezoji M, Shabakhty N, Tao L. Hydrodynamic damping of solid and perforated heave plates oscillating at low KC number based on experimental data: A review. Ocean Engineering 2022. https://doi.org/10.1016/j.oceaneng.2022.111247.
- 16. Ciba E. Heave motion of a vertical cylinder with heave plates. Polish Maritime Research 2021. https://doi.org/10.2478/pomr-2021-0004.
- 17. Ciba E, Dymarski P, Grygorowicz M. Heave plates with holes for floating offshore wind turbines. Polish Maritime Research 2022. https://doi.org/10.2478/pomr-2022-0003.
- 18. Ciba E, Dymarski P. Modelling of the viscosity effect of heave plates for floating wind turbines by hydrodynamic coefficients. Acta Mechanica et Automatica 2023. https://doi.org/10.2478/ama-2023-0054.
- 19. Journee JMJ, Massie WW. Offshore hydromechanics. Delft University of Technology; 2001.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13e8a522-076b-48a5-87e5-05875cc508af
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.