PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis and adaptive control of a novel 3-D conservative no-equilibrium chaotic system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
First, this paper announces a seven-term novel 3-D conservative chaotic system with four quadratic nonlinearities. The conservative chaotic systems are characterized by the important property that they are volume conserving. The phase portraits of the novel conservative chaotic system are displayed and the mathematical properties are discussed. An important property of the proposed novel chaotic system is that it has no equilibrium point. Hence, it displays hidden chaotic attractors. The Lyapunov exponents of the novel conservative chaotic system are obtained as L1 = 0.0395, L2 = 0 and L3 = −0.0395. The Kaplan-Yorke dimension of the novel conservative chaotic system is DKY =3. Next, an adaptive controller is designed to globally stabilize the novel conservative chaotic system with unknown parameters. Moreover, an adaptive controller is also designed to achieve global chaos synchronization of the identical conservative chaotic systems with unknown parameters. MATLAB simulations have been depicted to illustrate the phase portraits of the novel conservative chaotic system and also the adaptive control results.
Rocznik
Strony
333--353
Opis fizyczny
Bibliogr. 73 poz., rys., wykr., wzory
Twórcy
  • Research and Development Centre, Vel Tech University, Avadi, Chennai-600062, Tamilnadu, India
autor
  • Physics Department, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
Bibliografia
  • [1] K. T. Alligood, T. D. Sauer and J. A. Yorke: Chaos: An introduction to Dynamical Systems. New York, Springer-Verlag, 2000.
  • [2] E. N. Lorenz: Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20 (1963), 130–141.
  • [3] O. E. Rössler: An equation for continuous chaos. Physics Letters A, 57 (1976), 397–398.
  • [4] A. Arneodo, P. Coullet and C. Tresser: Possible new strange attractors with spiral structure. Communications in Mathematical Physics, 79 (1981), 573–579.
  • [5] J. C. Sprott: Some simple chaotic flows. Physical Review E, 50 (1994), 647–650.
  • [6] G. Chen and T. Ueta: Yet nother chaotic attractor. International journal of Bifurcation and Chaos, 9 (1999), 1465–1466.
  • [7] J. Lü and G. Chen: A new chaotic attractor coined. International Journal of Bifurcation and Chaos, 12 (2002), 659–661.
  • [8] C. X. Liu, T. Liu, L. Liu and K. Liu: A new chaotic attractor. Chaos, Solitons and Fractals, 22 (2004), 1031–1038.
  • [9] G. Cai and Z. Tan: Chaos synchronization of a new chaotic system via nonlinear control. Journal of Uncertain Systems, 1 (2007), 235-240.
  • [10] G. Tigan and D. Opris: Analysis of a 3D chaotic system. Chaos, Solitons and Fractals, 36 (2008), 1315–1319.
  • [11] D. Li: A three-scroll chaotic attractor. Physics Letters A, 372 (2008), 387–393.
  • [12] V. Sundarapandian and I. Pehlivan: Analysis, control, synchronization and circuit design of a novel chaotic system. Mathematical and Computer Modelling, 55 (2012), 1904–1915.
  • [13] V. Sundarapandian: Analysis and anti-synchronization of a novel chaotic system via active and adaptive controllers. Journal of Engineering Science and Technology Review, 6 (2013), 45–52.
  • [14] S. Vaidyanathan: A new six-term 3-D chaotic system with an exponential nonlinearity. Far East Journal of Mathematical Sciences, 79 (2013), 135–143.
  • [15] S. Vaidyanathan: Analysis and adaptive synchronization of two novel chaotic systems with hyperbolic sinusoidal and cosinusoidal nonlinearity and unknown parameters. Journal of Engineering Science and Technology Review, 6 (2013), 53–65.
  • [16] S. Vaidyanathan: A new eight-term 3-D polynomial chaotic system with three quadratic nonlinearities. Far East Journal of Mathematical Sciences, 84 (2014), 219–226.
  • [17] S. Vaidyanathan: Analysis, control and synchronisation of a six-term novel chaotic system with three quadratic nonlinearities. International Journal of Modelling, Identification and Control, 22 (2014), 41–53.
  • [18] S. Vaidyanathan and K. Madhavan: Analysis, adaptive control and synchronization of a seven-term novel 3-D chaotic system. International Journal of Control Theory and Applications, 6 (2013), 121–137.
  • [19] S. Vaidyanathan: Analysis and adaptive synchronization of eight-term 3-D polynomial chaotic systems with three quadratic nonlinearities. European Physical Journal: Special Topics, 223 (2014), 1519–1529.
  • [20] S. Vaidyanathan, Ch. Volos V. T. Pham, K. Madhavan and B. A. Idowu: Adaptive backstepping control, synchronization and circuit simulation of a 3-D novel jerk chaotic system with two hyperbolic sinusoidal nonlinearities. Archives of Control Sciences, 24 (2014), 257–285.
  • [21] S. Vaidyanathan: Generalised projective synchronisation of novel 3-D chaotic systems with an exponential non-linearity via active and adaptive control. International Journal of Modelling, Identification and Control, 22 (2014), 207–217.
  • [22] S. Vaidyanathan: Analysis, properties and control of an eight-term 3-D chaotic system with an exponential nonlinearity. International Journal of Modelling, Identification and Control, 23 (2015), 164–172.
  • [23] S. Vaidyanathan: A 3-D novel highly chaotic system with four quadratic nonlinearities, its adaptive control and anti-synchronization with unknown parameters. Journal of Engineering Science and Technology Review, 8 (2015), 106–115.
  • [24] S. Vaidyanathan, K. Rajagopal, C. K. Volos, I. M. Kyprianidis and I. N. Stouboulos: Analysis, adaptive control and synchronization of a seventerm novel 3-D chaotic system with three quadratic nonlinearities and its digital implementation in LabVIEW. Journal of Engineering Science and Technology Review, 8 (2015), 130-141.
  • [25] S. Vaidyanathan, C. K. Volos, I .M. Kyprianidis, I. N. Stouboulos and V.-T. Pham: Analysis, adaptive control and anti-synchronization of a sixterm novel jerk chaotic system with two exponential nonlinearities and its circuit simulation. Journal of Engineering Science and Technology Review, 8 (2015), 24–36.
  • [26] S. Vaidyanathan, C. K. Volos and V.-T. Pham: Analysis, adaptive control and adaptive synchronization of a nine-term novel 3-D chaotic system with four quadratic nonlinearities and its circuit simulation. Journal of Engineering Science and Technology Review, 8 (2015), 174–184.
  • [27] I. Pehlivian, I. M. Moroz and S. Vaidyanathan: Analysis, synchronization and circuit design of a novel butterfly attractor. Journal of Sound and Vibration, 333 (2014), 5077–5096.
  • [28] S. Jafari and J. C. Sprott: Simple chaotic flows with a line equilibrium. Chaos, Solitons and Fractals, 57 (2013), 79–84.
  • [29] S. Sampath, S. Vaidyanathan, C .K. Volos and V.-T. Pham: An eightterm novel four-scroll chaotic system with cubic nonlinearity and its circuit simulation. Journal of Engineering Science and Technology Review, 8 (2015), 1–6.
  • [30] V. T. Pham C. Volos, S. Jafari, Z. Wei and X. Wang: Constructing a novel no-equilibrium chaotic system. International Journal of Bifurcation and Chaos, 24 (2014), 1450073.
  • [31] V. T. Pham, S. Vaidyanathan, C. K. Volos and S. Jafari: Hidden attractors in a chaotic system with an exponential nonlinear term. European Physical Journal: Special Topics, 224 (2015), 1507–1517.
  • [32] S. Behnia, S. Afrang, A. Akhshani and Kh. Mabhouti: A novel method for controlling chaos in external cavity semiconductor laser. Optik - International Journal for Light and Electron Optics, 124 (2013), 757–764.
  • [33] J. M. Tuwankotta: Chaos in a coupled oscillators system with widely spaced frequencies and energy-preserving non-linearity. International Journal of Non-Linear Mechanics, 41 (2006), 180–191.
  • [34] S. Vaidyanathan: Adaptive synchronization of chemical chaotic reactors. nternational Journal of ChemTech Research, 8 (2015), 612–621.
  • [35] S. Vaidyanathan: Adaptive control of a chemical chaotic reactor. International Journal of PharmTech Research, 8 (2015), 377–382.
  • [36] S. Vaidyanathan: Adaptive backstepping control of enzymes-substrates system with ferroelectric behaviour in brain waves. International Journal of PharmTech Research, 8 (2015), 256–261.
  • [37] B. Sahoo and S. Poria: The chaos and control of a food chain model supplying additional food to top-predator. Chaos, Solitons & Fractals, 58 (2014), 52–64.
  • [38] W. Z. Huang and Y. Huang: Chaos of a new class of Hopfield neural networks. Applied Mathematics and Computation, 206 (2008), 1–11.
  • [39] Y. Sun, V. Babovic and E. S. Chan: Multi-step-ahead model error prediction using time-delay neural networks combined with chaos theory. Journal of Hydrology, 395 (2010), 109–116.
  • [40] M. Islam and K. Murase: Chaotic dynamis of a behavior-based miniature mobile robot: effects of environment and control structure. Neural Networks, 18 (2005), 123–144.
  • [41] Ch. K. Volos, I. M. Kyprianidis and I. N. Stouboulos: Experimental nvestigation on coverage performance of a chaotic autonomous mobile robot. Robotics and Autonomous Systems, 61 (2013), 1314–1322.
  • [42] H. T. YAau and C. S. Shieh: Chaos synchronization using fuzzy logic controller. Nonlinear Analysis: Real World Applications, 9 (2008), 1800–1810.
  • [43] N. S. Pai, H. T. Yau and C. L. Kuo: Fuzzy logic combining controller design for chaos control of a rod-type plasma torch system. Expert Systems with Applications, 37 (2010), 8278–8283.
  • [44] A. E. Matouk: Chaos, feedback control and synchronization of a fractionalorder modified autonomous Van der PolU˝ Duffing circuit. Communications in Nonlinear Science and Numerical Simulation, 16 (2011), 975–986.
  • [45] Ch. K. Volos, I. M. Kyprianidis, I. N. Stouboulos and A.N. Anagnostopoulos: Experimental study of the dynamic behavior of a double scroll Experimental study of the dynamic behavior of a double scroll circuit. Journal of Applied Functional Analysis, 4 (2009), 703–711.
  • [46] Ch. K. Volos, V.-T. Pham, S. Vaidyanathan, I. M. Kyprianidis and I. N. Stouboulos: Synchronization phenomena in coupled Colpitts circuits. Journal of Engineering Science and Technology Review, 8 (2015), 142–151.
  • [47] Ch. K. Volos, I. M. Kyprianidis and I. N. Stouboulos: Image encryption process based on chaotic synchronization phenomena. Signal Processing, 93 (2013), 1328–1340.
  • [48] Ch. K. Volos, I. M. Kyprianidis and I. N. Stouboulos: Text encryption scheme realized with a chaotic pseudo-random bit generator. Journal of Engineering Science and Technology Review, 6 (2013), 9–14.
  • [49] V.-T. Pham, C. Volos, S. Jafari, X. Wang and S. Vaidyanathan: Hidden hyperchaotic attractor in a novel simple memristive neural network. Optoelectronics and Advanced Materials, Rapid Communications, 8 (2014) 1157–1163.
  • [50] V.-T. Phaim, Ch. K. Volos, S. Vaidyanathan, T. P. Le and V. Y. Vu: A memristor-based hyperchaotic system with hidden attractors: Dynamics, synchronization and circuital emulating. Journal of Engineering Science and Technology Review, 8 (2015), 205–214.
  • [51] Ch. K. Volos, I. M. Kyprianidis, I. N. Stouboulos, E. Tlelocuautle and S. Vaidyanathan: Memristor: A new concept in synchronization of coupled neuromorphic circuits. Journal of Engineering Science and Technology Review, 8 (2015), 157–173.
  • [52] J. C. Sprott: Elegant Chaos. Singapore, World Scientific, 2010.
  • [53] W. G. Hoover: Remark on ‘Some simple chaotic flows’, Phys. Rev. E, 51 (1995), 759–760.
  • [54] M. Hénon and C. Heiles: The applicability of the third integral of motion: Some numerical experiments. Astrophysical Journal, 69 (1964), 73–79.
  • [55] S. Vaidyanathan and S. Pakiriswamy: A 3-D novel conservative chaotic system and its generalized projective synchronization via adaptive control. Journal of Engineering Science and Technology Review, 8 (2015), 52–60.
  • [56] G. Leonov, N. Kuznetsov, S. Seldedzhi and V. Vagaitsev: Hidden oscillations in dynamical systems. Trans. Syst. Contr., 6 (2011), 54–67.
  • [57] Z. Wei: Dynamical behaviors of a chaotic system with no equilibria. Phys. Lett. A, 376 (2011), 102–108.
  • [58] S. Jafari, J. C. Sprott and S. Golpayegani: Elementary quadratic chaotic flows with no equilibria. Phys. Lett. A, 377 (2013), 699–702.
  • [59] B. A. Idowu, U. E. Vincent and A. N. Njah: Synchronization of chaos in nonidentical parametrically excited systems. Chaos, Solitons and Fractals, 39 (2009), 2322–2331.
  • [60] S. Vaidyanathan and K. Rajagopal: Hybrid synchronization of hyperchaoticWang-Chen and hyperchaotic lorenz systems by active non-linear control. International Journal of Signal System Control and Engineering Application, 4 (2011), 55–61.
  • [61] S. Vaidyanathan, A. T. Azar, K. Rajagopal and P. Alexander: Design and SPICE implementation of a 12-term novel hyperchaotic system and its synchronisation via active control. International Journal of Modelling, Identification and Control, 23 (2015), 267–277.
  • [62] V. Sundarapandian and R. Kartheikeyan: Anti-synchronization of Lü and Pan chaotic systems by adaptive nonlinear control. European Journal of Scientific Research, 64 (2011), 94–106.
  • [63] V. Sundarapandian and R. Karthikeyan: Adaptive antisynchronization of Uncertain Tigan and Li Systems. Journal of Engineering and Applied Sciences, 7 (2012), 45–52.
  • [64] S. Vaidyanathan: Hyperchaos, qualitative analysis, control and synchronisation of a ten-term 4-D hyperchaotic system with an exponential nonlinearity and three quadratic nonlinearities. International Journal of Modelling, Identification and Control, 23 (2015), 380–392.
  • [65] S. Vaidyanathan, V.-T. Pham and C. K . Volos: A 5-D hyperchaotic Rikitake dynamo system with hidden attractors. European Physical Journal: Special Topics, 224 (2015), 1575–1592.
  • [66] S. Rasappan and S. Vaidyanathan: Synchronization of hyperchaotic Liu system via backstepping control with recursive feedback. Communications in Computer and Information Science, 305 (2012), 212–221.
  • [67] S. Vaidyanathan and S. Rasappan: Global chaos synchronization of nscroll Chua circuit and Lur’e system using backstepping control design with recursive feedback. Arabian Journal for Science and Engineering, 39 (2014), 3351–3364.
  • [68] S. Vaidyanathan, C. K. Volos, K. Rajagopal, I. M. Kypranidis and I. N. Stouboulos: Adaptive backstepping controller design for the antisynchronization of identical WINDMI chaotic systems with unknown parameters and its SPICE implementation. Journal of Engineering Science and Technology Review, 8 (2015), 74–82.
  • [69] S. Vaidyanathan and S. Sampath: Global chaos synchronization of hyperchaotic Lorenz systems by sliding mode control. Communications in Computer and Information Science, 205 (2011), 156–164.
  • [70] S. Vaidyanathan: Global chaos synchronisation of identical Li-Wu chaotic systems via sliding mode control. International Journal of Modelling, Identification and Control, 22 (2014), 170–177.
  • [71] S. Vaidyanathan, S. Sampath and A. T. Azar: Global chaos synchronisation of identical chaotic systems via novel sliding mode control method and its application to Zhu system. International Journal of Modelling, Identification and Control, 23 (2015), 92–100.
  • [72] H. K. Khalil: Nonlinear Systems. New York, Prentice Hall, 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13e46e46-e9d3-4d7c-9ca9-8c1b18b124b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.