PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Influence of the Wall Acoustic Impedance on the Room Acoustics. The Exact Solution

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Fourier method is applied to the description of the room acoustics field with the combination of uniform impedance boundary conditions imposed on some walls. These acoustic boundary conditions are expressed by absorption coefficient values In this problem, the Fourier method is derived as the combination of three one-dimensional Sturm-Liouville (S-L) problems with Robin-Robin boundary conditions at the first and second dimension and Robin-Neumann ones at the third dimension. The Fourier method requires an evaluation of eigenvalues and eigenfunctions of the Helmholtz equation, via the solution of the eigenvalue equation, in all directions. The graphic-analytical method is adopted to solve it It is assumed that the acoustic force constitutes a monopole source and finally the forced acoustic field is calculated. As a novelty, it is demonstrated that the Fourier method provides a useful and efficient approach for a room acoustics with different values of wall impedances. Theoretical considerations are illustrated for rectangular cross-section of the room with particular ratio. Results obtained in the paper will be a point of reference to the numerical calculations.
Rocznik
Strony
677--687
Opis fizyczny
Bibliogr. 43 poz., tab., wykr.
Twórcy
autor
  • The Faculty of Electrical and Computer Engineering, Department of Acoustics, Rzeszów University of Technology, Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • The Faculty of Electrical and Computer Engineering, Department of Acoustics, Rzeszów University of Technology, Powstańców Warszawy 12, 35-959 Rzeszów, Poland
autor
  • The Faculty of Electrical and Computer Engineering, Department of Acoustics, Rzeszów University of Technology, Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
  • 1. Alquran M., Al-Khaled K. (2010), Approximations of Sturm-Liouville eigenvalues using sin-Galerkin and differential transform methods, Applications and Applied Mathematics, 5, 128-147.
  • 2. Bistafa R. S., Morrissey J. W. (2003), Numerical solution of the acoustic eigenvalue equation in the rectangular room with arbitrary (uniform) wall impedances, Journal of Sound and Vibration, 263, 205-218.
  • 3. Blackstock D. T. (2000), Fundamentals of physical acoustics, Wiley-Interscience, New York.
  • 4. Bowles R. (2007), MATHM242 Lecture Notes – first half, University College London, London.
  • 5. Brański A. (2013), Numerical methods to the solution of boundary problems, classification and survey [in Polish], Rzeszów University of Technology Press, Rzeszów. ISBN 978-83-7199-792-1.
  • 6. Brański A., Borkowska D. (2015), Effectiveness of nonsingular solutions of the boundary problems based on Trefftz methods, Engineering Analysis with Boundary Elements, 59, 97-104.
  • 7. Brański A., Borkowski M., Borkowska D. (2012), A comparison of boundary methods based on inverse variational formulation, Engineering Analysis with Boundary Elements, 36, 505-510.
  • 8. Chen W., Zhang J. Y., Fu Z. J. (2014), Singular boundary method for modified Helmholtz equations, Engineering Analysis with Boundary Elements, 44, 112-119.
  • 9. Dance S., Van Buuren G. (2013), Effects of damping on the low-frequency acoustics of listening rooms based on an analytical model, Journal of Sound and Vibration, 332, 6891-6904.
  • 10. Dautray R., Lions J. L. (2000), Mathematical analysis and numerical methods for science and technology, Springer, Berlin.
  • 11. Ducourneaua J., Planeaub V. (2003), The average absorption coefficient for enclosed spaces with nonuniformly distributed absorption, Applied Acoustics, 64, 845-862.
  • 12. Evans L. C. (2002), Partial differential equations [in Polish], WN PWN, Warszawa.
  • 13. Fasshauer G. (2011), MATH 461: Fourier Series and Boundary Value Problems. Chapter V: Sturm-Liouville Eigenvalue Problems, Department of Applied Mathematics, Illinois Institute of Technology, Fall.
  • 14. Fu Z. J., Chen W., Gu Y. (2014), Burton-Miller-type singular boundary method for acoustic radiation and scattering, Journal of Sound and Vibration, 333, 3776-3793.
  • 15. Gerai M. (1993), Measurement of the sound absorption coeffiients in situ: the reflection method using periodic pseudo-random sequences of maximum length, Applied Acoustics, 39, 119-139.
  • 16. International Organization for Standardization ISO 354 (2003), Acoustics – measurement of sound absorption in a reverberation room.
  • 17. International Organization for Standardization ISO 10354-1 (1996), Acoustics – determination of sound absorption coefficient and impedance in impedance tube. Part 1: method using standing wave ratio.
  • 18. Johnson R. S. (2006), An introduction to Sturm-Liouville theory, School of Mathematics & Statistics – University of Newcastle upon Tyne.
  • 19. Kashdan E. (2017), ACM 30020 Advanced Mathematical Methods, Sturm-Liouville Problem (SLP), http://mathsci.ucd.ie/~ekashdan/page2/SLP (accessed March 17, 2017).
  • 20. Korany N., Blauert J., Abdel Alim O. (2001), Acoustic simulation of rooms with boundaries of partially specular reflectivity, Applied Acoustic, 62, 875-887.
  • 21. Korn G. A., Korn T. M. (1968), Mathematical handbook for scientists and engineers, McGraw-Hill Book Company, New York.
  • 22. Kuttruff H. (2000), Room acoustics, Fundamentals of Physical Acoustics, Wiley-Interscience, New York.
  • 23. Lehmann E., Johansson A. (2008), Prediction of Energy decay in room impulse responses simulated with an image-source model, Journal of the Acoustical Society of America, 124, 269-277.
  • 24. Lin J., Chen W., Chen C. S. (2014), Numerical treatment of acoustic problems with boundary singularities by the singular boundary method, Journal of Sound and Vibration, 333, 3177-3188.
  • 25. Lopez J., Carnicero D., Ferrando N., Escolano J. (2013), Parallelization of the finite-difference time-domain method for room acoustics modeling based on CUDA, Mathematical and Computer Modelling, 57, 1822-1831.
  • 26. Luizard P., Polack J. P., Katz B. (2014), Sound energy decay in coupled spaces using a parametric analytical solution of a diffusion equation, Journal of the Acoustical Society of America, 135, 2765-2776.
  • 27. McLachlan N. W. (1964), Bessel functions for engineers [in Polish], PWN, Warszawa.
  • 28. Meissner M. (2009a), Computer modelling of coupled spaces: variations of eigenmodes frequency due to a change in coupling area, Archives of Acoustics, 34, 157-168.
  • 29. Meissner M. (2009b), Spectral characteristics and localization of modes in acoustically coupled enclosures, Acta Acustica united with Acustica, 95, 300-305.
  • 30. Meissner M. (2010), Simulation of acoustical properties of coupled rooms using numerical technique based on modal expansion, Acta Physica Polonica A, 118, 123-127.
  • 31. Meissner M. (2012), Acoustic energy density distribution and sound intensity vector field inside coupled spaces, Journal of the Acoustical Society of America, 132, 228-238.
  • 32. Meissner M. (2013a), Analytical and numerical study of acoustic intensity field in irregularly shaped room, Applied Acoustics, 74, 661-668.
  • 33. Meissner M. (2013b), Evaluation of decay Times from noisy room responses with puretone excitation, Archives of Acoustics, 38, 47-54.
  • 34. Meziani H. (2016), Sturm-Liouville Problems, Generalized Fourier Series. http://www2.fiu.edu/~meziani/NOTE9.pdf (accessed May 11, 2016).
  • 35. Morse P. M., Ingard K. U. (1987), Theoretical acoustics, Princeton University Press, New Jersey.
  • 36. Naka Y., Oberai A. A., Shinn-Cunningham B. G. (2005), Acoustic eigenvalues of rectangular rooms with arbitrary wall impedances using the interval Newton/generalized bisection method, Journal of the Acoustical Society of America, 118, 3662-3671.
  • 37. Neta B. (2012), Partial differential equations, MA 3132 Lecture notes, Monterey, California 93943.
  • 38. Okuzono T., Otsuru T., Tomiku R., Okamoto N. (2014), A finite-element method using dispersion reduced spline elements for room acoustics simulation, Applied Acoustics, 79, 1-8.
  • 39. Peirce A. (2014), Lecture 28: Sturm-Liouville Boundary Value Problems, Introductory lecture notes on Partial Differential Equations. The University of British Columbia, Vancouver.
  • 40. Summers J. (2012), Accounting for delay of Energy transfer between coupled rooms in statistical-acoustics models of reverberant-energy decay, Journal of the Acoustical Society of America, 132, 129-134.
  • 41. Takahashi Y., Otsuru T., Tomiku R. (2005), In situ measurements of surface impedance and absorption coefficients of porous materials using two microphones and ambient noise, Applied Acoustics, 66, 845-865.
  • 42. Thompson L. L., Pinsky P.-M. (1995), A Galerkin Least Squares Finite Element Method for the twodimensional Helmholtz equation, International Journal Numerical Methods Engineering, 38, 371-397.
  • 43. Xu B., Sommerfeldt S. (2010), A hybrid modal analysis for enclosed sound fields, Journal of the Acoustical Society of America, 128, 2857-2867.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13dcc9ce-94d4-421a-9dbf-5aeb4096ea95
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.