PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Existence and approximate controllability of Sobolev type fractional stochastic evolution equations

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We study the existence of mild solutions and the approximate controllability concept for Sobolev type fractional semilinear stochastic evolution equations in Hilbert spaces. We prove existence of a mild solution and give sufficient conditions for the approximate controllability. In particular, we prove that the fractional linear stochastic system is approximately controllable in [0, b] if and only if the corresponding deterministic fractional linear system is approximately controllable in every [s, b], 0 ≤ s < b. An example is provided to illustrate the application of the obtained results.
Twórcy
  • Department of Mathematics, Eastern Mediterranean University, Gazimagusa, TRNC, Mersin10, Turkey
Bibliografia
  • [1] S.G. Samko, A.A. Kilbas, and O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, London, 1993.
  • [2] N.I. Mahmudov, “Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces”, SIAM J. on Control and Optimization 42, 1604–1622 (2003).
  • [3] J. Klamka, “Constrained approximate controllability”, IEEE Trans. on Automatic Control 45, 1745–1749 (2000).
  • [4] J. Klamka, “Stochastic controllability of systems with multiple delays in control”, Int. J. Appl. Math. Comput. Sci. 19 (1), 39–47 (2009).
  • [5] J. Klamka, “Stochastic controllability and minimum energy control of systems with multiple delays in control”, Appl. Math. Comput. 206 (2), 704–715 (2008).
  • [6] J. Klamka, “Stochastic controllability of linear systems with state delays”, Int. J. Appl. Math. Comput. Sci. 17 (1), 5–13 (2007).
  • [7] X. Fu and K. Mei, “Approximate controllability of semilinear partial functional differential systems”, J. Dynamical and Control Systems 15, 425–443 (2009).
  • [8] R. Sakthivel, Y. Ren, and N.I.Mahmudov, “On the approximate controllability of semilinear fractional differential systems”, Computers and Mathematics with Applications 62, 1451–1459 (2011).
  • [9] N.I. Mahmudov and A. Denker, “On controllability of linear stochastic systems”, Int. J. Control 73, 144–151 (2000).
  • [10] J. Klamka, “Stochastic controllability of linear systems with delay in control”, Bull. Pol. Ac.: Tech. 55, 23–29 (2007).
  • [11] R. Sakthivel, Y. Ren, and N.I. Mahmudov, “Approximate controllability of second-order stochastic differential equations with impulsive effects”, Modern Physics Letters B 24, 1559–1572 (2010).
  • [12] R. Sakthivel, J.J. Nieto, and N.I. Mahmudov, “Approximate controllability of nonlinear deterministic and stochastic systems with unbounded delay”, Taiwanese J. Mathematics 14, 1777–1797 (2010).
  • [13] R. Sakthivel, Y. Ren, and N.I. Mahmudov, “On the approximate controllability of semilinear fractional differential systems”, Comput. Math. Appl. 62, 1451–1459 (2011).
  • [14] R. Sakthivel, N.I. Mahmudov, and J.J. Nieto, “Controllability for a class of fractional-order neutral evolution control systems”, Appl. Math. and Comp. 218, 10334–10340 (2012).
  • [15] A.E. Bashirov and N.I. Mahmudov, “On concepts of controllability for deterministic and stochastic systems”, SlAM J. Control and Optimization 37, 1808–1821 (1999).
  • [16] K. Balachandran and J.P. Dauer, “Controllability of functional differential systems of Sobolev type in Banach spaces”, Kybernetika 34, 349–357 (1998).
  • [17] J.P. Dauer and N.I. Mahmudov, “Approximate controllability of semilinear functional equations in Hilbert spaces”, J. Math. Anal. Appl. 273, 310–327 (2002).
  • [18] N.I. Mahmudov, “Approximate controllability of evolution systems with nonlocal conditions”, Nonlinear Anal. 68, 536–546 (2008).
  • [19] N.I. Mahmudov and S. Zorlu, “Controllability of semilinear stochastic systems”, Int. J. Control 78, 997–1004 (2005).
  • [20] R. Sakthivel, S. Suganya, and S.M. Anthoni, “Approximate controllability of fractional stochastic evolution equations”, Comput. Math. Appl. 63 (3), 660–668 (2012).
  • [21] R. Sakthivel, R. Ganesh, and S. Suganya, “Approximate controllability of fractional neutral stochastic system with infinite delay”, Rep. Math. Phys. 70 (3), 291–311 (2012).
  • [22] R. Sakthivel, R. Yong, and N.I. Mahmudov, “Approximate controllability of second-order stochastic differential equations with impulsive effects”, Modern Phys. Lett. B 24, 1559–1572 (2010).
  • [23] J. Wang and Y. Zhou, “Existence and controllability results for fractional semilinear differential inclusions”, Nonlinear Anal., Real World Appl. 12, 3642–3653 (2011).
  • [24] H. Ahmed, “Controllability for Sobolev type fractional integrodifferential systems in a Banach space”, Advances in Difference Equations 2012, 2012:167 (2012).
  • [25] M. Feckan, J.R. Wang, and Y. Zhou, “Controllability of fractional functional evolution equations of Sobolev type via characteristic solution operators”, J. Optim. Theory Appl. 156 (1), 79–95 (2013).
  • [26] K. Balachandran and J.P. Dauer, “Controllability of Sobolev type integrodifferential systems in Banach spaces”, J. Mathematical Analysis and Applications 217, 35–348 (1998).
  • [27] K. Balachandran and S. Karunanithi, “Regularity of solutions of Sobolev type semilinear integrodifferential equations in Banach spaces”, Electronic J. Differential Equations 114, 1–8 (2003).
  • [28] K. Balachandran and J.Y. Park, “Sobolev type integrodifferential equation with nonlocal condition in Banach spaces”, Taiwanese J. Mathematics 7, 155–163 (2003).
  • [29] K. Balachandran and R. Sakthivel, “Controllability of Sobolev type semilinear integrodifferential systems in Banach spaces”, Applied Mathematics Letters 12, 63–71 (1999).
  • [30] N.I. Mahmudov, “Approximate controllability of fractional Sobolev-type evolution equations in Banach spaces”, Abstr. Appl. Anal. Art. ID 502839, 1–9 (2013).
  • [31] Y. Zhou and F. Jiao, “Existence of mild solutions for fractional neutral evolution equations”, Comput. Math. Appl. 59, 1063–1077 (2010).
  • [32] Y. Zhou and F. Jiao, “Nonlocal Cauchy problem for fractional evolution equations”, Nonlinear Anal., Real World Appl. 11, 4465–4475 (2010).
  • [33] H. Brill, “A semilinear Sobolev evolution equation in Banach space”, J. Differential Equations 24, 412–425 (1977).
  • [34] R.E. Showalter, “Existence and representation theorem for a semilinear Sobolev equation in Banach space”, SIAM J. on Mathematical Analysis 3, 527–543 (1972).
  • [35] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, No. 45, Series: Encyclopedia of Mathematics and its Applications, London, 1992.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13dc05c7-c409-4c48-94b3-ad3ccbcd37fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.