PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative performance assessment of nano-composite cathode of lmso-bscmf for low temperature solid oxide fuel cell applications

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The development of novel cathode materials for low temperature solid oxide fuel cell (SOFC) applications is one of the significant research areas in materials engineering. In the current work, composite cathode materials were prepared by two different modes and the fuel cell performance was assessed using a gadolinium-doped ceria (GDC) electrolyte. Nanocomposite cathodes were fabricated using a lanthanum strontium manganite oxide (LSMO) powder of a 50-100 nm particle size and Ba0.5Sr0.5(Co0.2Mg0.8)0.2Fe0.8O3 (BSCMF) powder of a 1 μm particle size. The cathodes were prepared as layered composites and mixed composites. The electrochemical performance of the symmetric cells was investigated by electrochemical impedance spectroscopy (EIS) at the intermediate temperature of 700°C using air atmosphere. The cathode film coating on the electrolyte was sintered at three different temperatures (900, 950 and 1000°C) and the cell performance was assessed at 700°C. Lower polarization resistance (RP) values were recorded for the cell produced at 900°C. The RP of the nano-composite cathodes was measured as lower (2.72 Ω-cm2 for the layered composites and 1.76 Ω-cm2 for the mixed composites) compared with LSMO. Hence, the results demonstrate the potential of using an LSMO-BSCMF composite in the mixed mode as a cathode for low temperature SOFCs to achieve a lower polarization potential.
Rocznik
Strony
235--238
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
  • Department of Mechanical Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522502, Andhra Pradesh, India
  • Department of Mechanical Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522502, Andhra Pradesh, India
Bibliografia
  • 1. Fan L., Tu Z., Chan S.H., Energy Rep. 2021, 7, 8421-8446.
  • 2. Singhal S.C., Kendal K., High Temperature Solid Oxide Fuel Cells, Elsevier, Netherlands 2003.
  • 3. Xu Q., Guo Z., Xia L., He Q., Li Z., Temitope Bello I.,Zheng K., Ni M., Energy Convers. Manag. 2022, 253, 115175.
  • 4. Lee K.T., Wachsman E.D., MRS Bull. 2014, 39, 783.
  • 5. Chen Y., Zhou W., Ding D., Liu M., Ciucci F., Tade M., Shao Z., Adv. Energy Mater. 2015, 5, 1500537.
  • 6. Dai H., Kou H., Tao Z., Liu K., Xue M., Zhang Q., Bi L., Ceram. Int. 2020, 46, 6987.
  • 7. Choi S., Yoo S., Kim J., Park S., Jun A., Sengodan S., Kim J., Shin J., Jeong H.Y., Choi Y., Kim G., Liu M., Sci. Rep. 2013, 3, 3.
  • 8. Wang B., Bi L., Zhao X.S., Ceram. Int. 2018, 44, 5139.
  • 9. Baumann F.S., Fleig J., Cristiani G., Stuhlhofer B., Habermeier H.U., Maier J., J. Electrochem. Soc. 2007, 154, B931.
  • 10. Lee S.J., Yong S.M., Kim D.S., Kim D.K., Int. J. Hydrogen Energy 2012, 37, 17217.
  • 11. Duan C., Hook D., Chen Y., Tong J., O’Hayre R., Energy Environ. Sci. 2017, 10, 176.
  • 12. Habiballah A.S., Nafisah O., Abdul M.J., Ceram. Int. 2020, 46(14), 23262.
  • 13. Zhao S., Tian N., Yu J., J. Alloys. Compd. 2020, 825, 154013.
  • 14. Habiballah A.F., Osman N., Jani A.M.M., Ceram. Int. 2020, 46(14), 23262.
  • 15. Dey S., Das S., Chaudhary S., Parvatalu D., Mukhopadhyay M., Paul S., Sharma A.D., Mukhopadhyay J., Scripta Mater. 2023, 229, 115380.
  • 16. Rafaqat M., Ali G., Ahmad N., Hassan S., Jafri M., Atiq S., Abbas G., Mustafa G.M., Raza R., J. Alloys Compd. 2023, 937, 168214.
  • 17. Liu D., Dou Y., Xia T., Li Q., Sun L., Huo L., Zhao H., J. Power Sources 2021, 494, 229778.
  • 18. Zeng Q., Zhang X., Wang W., Zhang D., Jiang Y., Zhou X., Lin B., Catalysts 2020, 10(2), 235.
  • 19. Gou M., Ren R., Sun W., Xu C., Meng X., Wang Z., Qiao J., Sun K., Ceram. Int. 2019, 45(12), 15696-15704.
  • 20. Li X., Liu Y., Liu W., Wang C., Xu X., Dai H., Wang X., Bi L., Sustain. Energ. Fuels 2021, 5, 4261-4267.
  • 21. Meffert M., Unger L.S., Störmer H., Sigloch F., Wagner S.F., Ivers-Tiffée E., Gerthsen D., J. Am. Ceram. Soc. 2019, 102, 4929-4942.
  • 22. Subhashini P.V.C.K., Rajesh K.V.D., Trans. Indian Inst. Met. 2022, DOI: 10.1007/s12666-022-02699-y.
  • 23. Chen X., Wang J., Liang Q., Sun X., Zhu X., Zhou D., Meng J., Solid. State Sci. 2020, 100, 106108.
  • 24. Fleig J., Maier J., J. Eur. Ceram. Soc. 2004, 24, 1343-1347.
  • 25. Holtappels P., Mehling H., Roehlich S., Liebermann S.S., Stimming U., Fuel Cell. 2005, 5, 499-508.
  • 26. Marshenya S.N., Politov B.V., Osinkin D.A., Suntsov A.Y., Leonidov I.A., Kozhevnikov V.L., J. Alloys Compd. 2019, 779, 712-719.
  • 27. Dai H., Da’as E.H., Shafi S.P., Wang H., Bi L., J. Eur. Ceram. Soc. 2018, 38, 2903-2908.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13c89e63-5704-4f28-9f9f-f6843598fa1e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.