PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Real fracture toughness of FRC and FGC: size and boundary effects

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present dilemma is how to simulate the real crack in full depth (FD) fiber-reinforced concrete (FRC), FD FRC, to get the actual fracture toughness of such fibrous composites, i.e., through-thickness pre-cracks are inappropriate for such materials. To overcome this dilemma, a new technique was adopted to create a pre-matrix crack (MC) without cutting the fibers bridging the two surfaces of the pre-crack. The main objective of the present work is to study the size and boundary effects on the real fracture toughness of MC-FD FRC and functionally graded concrete (FGC). Forty-eight MC-FD FRC and MC-FGC beams with three different span to depth ratios L/d equal 4, 5, and 6, and three different beam depths of the same beam span have been tested under three-point bending. All beams have the same pre-MC length to beam depth ratio (ao /d) of 1/3. Hooked end steel fibers of 1% fiber volume fraction produced FRC. FGC beams consist of three equal layers, FRC layer at the tension side, normal strength concrete layer at the middle of the beam, and high strength concrete layer at the compression side. The applied load versus all beams' crack mouth opening displacement (CMOD) curves have been analyzed. The present load/ CMOD results showed that beams having constant L/d ratios are recommended to capture independent size effect parameters. The size effect law (SEL) and boundary effect model (BEM) are good candidates to predict the size effect. According to the maximum non-damaged defect concept, the SEL is more reliable in predicting MC FD FRC fracture toughness than BEM.
Rocznik
Strony
art. no. e99, 1--17
Opis fizyczny
Bibliogr. 60 poz., il., tab., wykr.
Twórcy
  • Materials Engineering Department, Faculty of Engineering, Zagazig University, Zagazig, Egypt
autor
  • Materials Engineering Department, Faculty of Engineering, Zagazig University, Zagazig, Egypt
  • Materials Engineering Department, Faculty of Engineering, Zagazig University, Zagazig, Egypt
Bibliografia
  • 1. ACI 544.4R-18. Guide for design with fiber-reinforced concrete. Am Concr Inst. 2018;1-33.
  • 2. Roesler J, Paulino G, Gaedicke C, Bordelon A, Park K. Fracture behavior of functionally graded concrete materials for rigid pavements. J Transp Res Board Natl Acad Washingt. 2007. https://doi.org/10.3141/2037-04.
  • 3. ACI 544.1R-96. Report on fiber-reinforced concrete. ACI Man Concr Pract. 2009;1-66.
  • 4. Prasad N, Murali G. Research on flexure and impact performance of functionally-graded two-stage fibrous concrete beams of different sizes. Constr Build Mater. 2021. https://doi.org/10.1016/j.conbuildmat.2021.123138.
  • 5. Naghibdehi MG, Naghipour M, Rabiee M. Behaviour of functionally graded reinforced-concrete beams under cyclic loading. Gradjevinar. 2015;67:427-439. https://doi.org/10.14256/JCE.1124.2014.
  • 6. Dupont D, Vandewalle L. Distribution of steel fibres in rectangular sections. Cem Concr Compos. 2005;27(27):391–8. https://doi.org/10.1016/j.cemconcomp.2004.03.005.
  • 7. Amparano FE, Xi Y, Roh YS. Experimental study on the effect of aggregate content on fracture behavior of concrete. Eng Fract Mech. 2000;67:65-84. https://doi.org/10.1016/S0013-7944(00)00036-9.
  • 8. Bažant ZP, Yu Q, Zi G. Choice of standard fracture test for concrete and its statistical evaluation. Int J Fract. 2002;118:303-337. https://doi.org/10.1023/A:1023399125413.
  • 9. Bažant ZP, Rasoolinejad M, Dönmez A, Luo W. Dependence of fracture size effect and projectile penetration on fiber content of FRC. IOP Conf Ser Mater Sci Eng. 2019. https://doi.org/10.1088/1757-899X/596/1/012001.
  • 10. Hillerborg A, Modéer M, Petersson PE. Analysis of crack formation and crack growth in concrete by means of fracture mechanic and finite elements. Cem Concr Res. 1976;6:773-781. https://doi.org/10.1016/0008-8846(76)90007-7.
  • 11. Bažant ZP, Oh BH. Crack band theory for fracture of concrete. Mater Struct. 1983;16:155-177. https://doi.org/10.1007/BF024 86267.
  • 12. Jenq YS, Shah SP. A fracture toughness criterion for concrete. Eng Fract Mech. 1985;21:1055-69. https://doi.org/10.1016/0013-7944(85)90009-8.
  • 13. Bažant ZP, Gettu R, Kazemi MT. Identification of nonlinear fracture properties from size effect tests and structural analysis based on geometry-dependent R-curves. Int J Rock Mech Min Sci. 1991;28:43-51. https://doi.org/10.1016/0148-9062(91)93232-U.
  • 14. Hillerborg A. The theoretical basis of a method to determine the fracture energy GF of concrete. Mater Struct. 1985;18:291-296.
  • 15. Bažant ZP, Yu Q. Universal size effect law and effect of crack depth on quasi-brittle structure strength. J Eng Mech. 2009;135:78-84. https://doi.org/10.1061/(ASCE)0733-9399(2009)135:2(78).
  • 16. Ouyang C, Tang T, Shah SP. Relationship between fracture parameters from two parameter fracture model and from size effect model. Mater Struct. 1996;29:79–86. https:// doi. org/ 10. 1007/bf02486197.
  • 17. Nazari A, Sanjayan JG. Stress intensity factor against fracture toughness in functionally graded geopolymers. Arch Civ Mech Eng. 2015. https://doi.org/10.1016/j.acme.2015.06.005.
  • 18. Baker G, Karihaloo BL. Fracture processes in brittle disordered materials: concrete, rock, ceramics, 1st ed. London: CRC Press, Taylor & Francis Group; 1994. https://doi.org/10.1007/bf024.72214.
  • 19. Duan K, Hu XI, Wittmann FH. Explanation of size effect in concrete fracture using non-uniform energy distribution. Mater Struct.2002;35:326-331.
  • 20. Duan K, Hu X, Wittmann FH. Boundary effect on concrete fracture and non-constant fracture energy distribution. Eng Fract Mech. 2003;70:2257–68. https://doi.org/10.1016/S0013-7944(02)00223-0.
  • 21. Duan K, Hu X, Wittmann FH. Thickness effect on fracture energy of cementitious materials. Cem Concr Res. 2003;33:499-507.
  • 22. Hu X, Wittmann F. Size effect on toughness induced by crack close to free surface. Eng Fract Mech. 2000;65:209–21. https://doi.org/10.1016/s0013-7944(99)00123-x.
  • 23. Duan K, Hu X. Applications of boundary effect model to quasi-brittle fracture of concrete and rock. J Adv Concr Technol. 2005;3:413-422.
  • 24. Hu X, Duan K. Size effect and quasi-brittle fracture: the role of FPZ. Int J Fract. 2008. https://doi.org/10.1007/s10704-008-9290-7.
  • 25. Hu X, Duan K. Mechanism behind the size effect phenomenon. J Eng Mech. 2010;136:60-68. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000070.
  • 26. Hu X, Guan J, Wang Y, Keating A, Yang S. Mechanism behind the size effect models on new developments. Eng Fract Mech. 2017;175:146-67. https://doi.org/10.1016/j.engfracmech.2017.02.005.
  • 27. Yu Q, Le J, Hoover CG, Bažant Z. Problems with Hu-Duan boundary effect model and its comparison to size-shape effect law for quasi-brittle fracture. J Eng Mech. 2010;136:40-50. https://doi.org/10.1061/(ASCE)EM.1943-7889.89.
  • 28. Carloni C, Cusatis G, Salviato M, Le J, Hoover CG, Bazant Z. Critical comparison of the boundary effect model with cohesive crack model and size effect law. Eng Fract Mech. 2019;215:193-210. https://doi.org/10.1016/j.engfracmech.2019.04.036.
  • 29. Hoover CG, Bažant Z. Comparison of the Hu-Duan boundary effect model with the size-shape effect law for quasi-brittle fracture based on new comprehensive fracture tests. J Eng Mech. 2014;140:480–6. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000632.
  • 30. Xie C, Cao M, Guan J, Liu Z, Khan M. Improvement of boundary effect model in multi-scale hybrid fibers reinforced cementitious composite and prediction of its structural failure behaviour. Compos Part B. 2021. https://doi.org/10.1016/j.compositesb.2021.109219.
  • 31. Carpinteri A. Stability of fracturing process in RC beams. J Struct Eng. 1984;110:544-558. https://doi.org/10.1061/(asce)0733-9445(1984)110:3(544).
  • 32. Baluch MH, Azad AK, Ashmawi W. Fracture mechanics application to reinforced concrete members in flexure. Appl Fract Mech Reinf Concr CRC Press. 1992. https://doi.org/10.1201/97814.82296624-16.
  • 33. El-Sagheer I, Abd-Elhady AA, Sallam HEDM, Naga SAR. An assessment of ASTM E1922 for measuring the translaminar fracture toughness of laminated polymer matrix composite materials. Polymers Basel. 2021. https://doi.org/10.3390/polym13183129.
  • 34. Elakhras AA, Seleem MH, Sallam HEM. Intrinsic fracture toughness of fiber reinforced and functionally graded concretes: aninnovative approach. Eng Fract Mech. 2021. https://doi.org/10.1016/j.engfracmech.2021.108098.
  • 35. Elakhras AA, Seleem MH, Sallam HEM. Fracture toughness of matrix cracked FRC and FGC beams using equivalent TPFM. Frat Ed Integrità Strutt. 2022;60:73–88. https://doi.org/10.3221/IGF-ESIS.60.06.
  • 36. Sallam HEM, Mubaraki M, Yusoff NIM. Application of the maximum undamaged defect size (d max ) concept in fiber-reinforced concrete pavements. Arab J Sci Eng. 2014;39:8499-506. https://doi.org/10.1007/s13369-014-1400-4.
  • 37. Bazant ZP, Pfeiffer PA. Determination of fracture energy from size effect and brittleness number. ACI Mater J. 1987;84:463-480. https://doi.org/10.14359/2526.
  • 38. Burtscher S, Chiaia B, Dempsey JP, Ferro G, Gopalaxatnam VS, Prat P, Rokugo K, Saouma VE, Slowik V, Vitek L, Willam K. RILEM TC QFS ‘Quasibrittle fracture scaling and size effect’ - Final report 1. Mater Struct. 2004;37:547–68. https://doi.org/10.1617/14109.
  • 39. Han X, Chen Y, Xiao Q, Cui K, Chen Q, Li C, Qiu Z. Determination of concrete strength and toughness from notched 3 PB specimens of same depth but various span-depth ratios. Eng Fract Mech. 2021. https://doi.org/10.1016/j.engfracmech.2021.107589.
  • 40. ACI 211.1-91. Standard practice for selecting proportions for normal, heavyweight, and mass concrete. Am Concr Inst. 2009;1-38.
  • 41. ACI 544.4R-09. Design considerations for steel fiber reinforced. ACI Man Concr Pract. 2009;1-18.
  • 42. ESS 4756-1. Cement part (1) composition, specifications and conformity criteria for common cements, Egypt. Organ Stand Qual Cairo Egypt. (2013). https://www.eos.org.eg/en/standard/12097. Accessed 1 Feb 2022.
  • 43. EN 197-1:2011. Cement composition, specifications and conformity criteria for common cements. Eur Stand. 2011. https://www.en-standard.eu/bs-en-197-1-2011-cement-composition-specifications-and-conformity-criteria-for-common-cements/. Accessed 1 Feb 2022.
  • 44. ASTM C1240-20, Standard specification for silica fume used in cementitious mixtures, ASTM Int. 2020;1-7. https://www.astm.org/Standards/C1240. Accessed 1 Feb 2022.
  • 45. BS 5075-3. Concrete admixtures-part 3: superplasticizing admixtures, specifies performance requirements and tests, marking and provision of information. Br Stand Inst Stand Publ Lond. 1985;1-16.
  • 46. EN 934-2. Admixtures for concrete, mortar and grout-part 2: concrete admixtures-definitions, requirements, conformity, marking and labelling. Eur Stand. 2009;1-24.
  • 47. ASTM C33/C33M-18. Standard specification for concrete aggregates. ASTM Int. West Conshohocken, United States. (2018). https://doi.org/10.1520/C0033_C0033M-18.
  • 48. ACI 363R-10. Report on high-strength concrete. ACI J Proc. 2010;1-65.
  • 49. BS EN 12390-3:2019, Testing hardened concrete-compressive strength of test specimens, BSI Stand Publ London. 2019. https://www.en-standard.eu/bs-en-12390-3-2019-testing-hardened-concrete- compressive-strength-of-test-specimens/. Accessed 1 Feb 2022.
  • 50. BS EN 12390-6:2009. Testing hardened concrete - tensile splitting strength of test specimens. BSI Stand Publ Lond. 2009. Accessed 1 Feb 2022.
  • 51. Othman MA, El-Emam HM, Seleem MH, Sallam HEM, Moawad M. Flexural behavior of functionally graded concrete beams with different patterns. Arch Civ Mech Eng. 2021. https://doi.org/10.1007/s43452-021-00317-0.
  • 52. Chen Y, Han X, Hu X, Zhu W. Statistics-assisted fracture modelling of small un-notched and large notched sand stone specimens with specimen-size/grain-size ratio from 30 to 900. Eng Fract Mech. 2020;235:1-15. https://doi. org/10.1016/j.engfracmech.2020.107134.
  • 53. ASTM C1609, C1609M-12. Standard test method for flexural performance of fiber-reinforced concrete (using beam with third-point loading) 1. ASTM Stand. 2013;12:1-8. https://doi.org/10.1520/C1609.
  • 54. Mastali M, Naghibdehi MG, Naghipour M, Rabiee SM. Experimental assessment of functionally graded reinforced concrete (FGRC) slabs under drop weight and projectile impacts. Constr Build Mater. 2015;95:296–311. https://doi.org/10.1016/j.conbuildmat.2015.07.153.
  • 55. Mubaraki M, Sallam HEM. Reliability study on fracture and fatigue behavior of pavement materials using SCB specimen. Int J Pavement Eng. 2020;21:1563-75. https://doi.org/10.1080/10298436.2018.1555332.
  • 56. Pook LP. Analysis and application of fatigue crack growth data. J Strain Anal Eng Des. 1975;4:242-250.
  • 57. Taylor D. The theory of critical distances: a new perspective in fracture mechanics. Oxford: Elsevier; 2007.
  • 58. Mubaraki M, Osman SA, Sallam HEM. Effect of RAP content on flexural behavior and fracture toughness of flexible pavement. Lat Am J Solids Struct. 2019;16:1-15.
  • 59. Al Hazmi HSJ, Al Hazmi WH, Shubaili MA, Sallam HEM. Fracture energy of hybrid polypropylene-steel fiber high strength concrete. WIT Trans Built Environ. 2012;124:309–18. https://doi.org/10.2495/HPSM120271.
  • 60. Abou El-Mal HSS, Sherbini AS, Sallam HEM. Mode II fracture toughness of hybrid FRCs. Int J Concr Struct Mater. 2015;9:475-486. https://doi.org/10.1007/s40069-015-0117-4.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13c21551-c4cd-401b-9024-77acbfc0473a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.