PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dead time effects compensation strategy by third harmonic injection for a five-phase inverter

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes a method for compensation of dead-time effects for a five-phase inverter. In the proposed method an additional control subsystem was added to the field-oriented control (FOC) scheme in the coordinate system mapped to the third harmonic. The additional control loop operates in the fixed, orthogonal reference frame (α − β coordinates) without the need for additional Park transformations. The purpose of this method is to minimize the dead-time effects by third harmonic injection in two modes of operation of the FOC control system: with sinusoidal supply and with trapezoidal supply. The effectiveness of the proposed control method was verified experimentally on a laboratory setup with a prototype five-phase interior permanent magnet synchronous machine (IPMSM). All experimental results were presented and discussed in the following paper.
Rocznik
Strony
17--35
Opis fizyczny
Bibliogr. 25 poz., fot., rys., tab., wykr., wz.
Twórcy
  • Faculty of Electrical and Control Engineering, Gdańsk University of Technology 11/12 Narutowicza str., 80-233 Gdańsk, Poland
  • Faculty of Electrical and Control Engineering, Gdańsk University of Technology 11/12 Narutowicza str., 80-233 Gdańsk, Poland
  • Faculty of Electrical and Control Engineering, Gdańsk University of Technology 11/12 Narutowicza str., 80-233 Gdańsk, Poland
Bibliografia
  • [1] Levi E., Bojoi R., Profumo F., Toliyat H.A., Williamson S., Multiphase induction motor drives – a technology status review, Electric Power Applications IET, vol. 1, no. 4, pp. 489–516 (2007), DOI: 10.1049/iet-epa:20060342.
  • [2] Levi E., Multiphase Electric Machines for Variable-Speed Applications, IEEE Transactions on Industrial Electronics, vol. 55, no. 5, pp. 1893–1909 (2008), DOI: 10.1109/TIE.2008.918488.
  • [3] Cao W., Mecrow B.C., Atkinson G.J., Bennett J.W., Atkinson D.J., Overview of Electric Motor Technologies Used for More Electric Aircraft (MEA), IEEE Transactions on Industrial Electronics, vol. 59, no. 9, pp. 3523–3531 (2012), DOI: 10.1109/TIE.2011.2165453.
  • [4] Barrero F., Duran M.J., Recent Advances in the Design, Modeling, and Control of Multiphase Machines – Part I, IEEE Transactions on Industrial Electronics, vol. 63, no. 1, pp. 449–458 (2016), DOI: 10.1109/TIE.2015.2447733.
  • [5] Zhang J., He S.J., Wang K., Multi-Harmonic Currents Control Strategy for Five-Phase Permanent Magnet Machine with non-sinusoidal back-EMF, IEEE Access (2020), DOI: 10.1109/ACCESS.2020.2989323.
  • [6] Laksar J., Cermak R., Drazan J., Comparison of Five-Phase Winding Configurations of High-Speed PMSM Feasible to the Third Harmonic Current Injection, 2022 20th International Conference on Mechatronics – Mechatronika (ME), Pilsen, Czech Republic, pp. 1–7 (2022), DOI: 10.1109/ME54704.2022.9983381.
  • [7] Lewicki A., Dead-Time Effect Compensation Based on Additional Phase Current Measurements, IEEE Transactions on Industrial Electronics, vol. 62, no. 7, pp. 4078–4085 (2015), DOI: 10.1109/TIE.2015.2389756.
  • [8] Szwarc K.J., Cichowski A., Nieznanski J., Szczepankowski P., Modeling the effect of parasitic capacitances on the dead-time distortion in multilevel NPC inverters, IEEE International Symposium on Industrial Electronics, Gdansk, Poland, pp. 1869–1874 (2011), DOI: 10.1109/ISIE.2011.5984442.
  • [9] Attia H., Che H.S., Suan F.T., Elkhateb A., Mitigating the Dead-time Effects on Harmonics Spectrum of Inverter Waveform by the Confined Band VSFPWM Technique, International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 12, no. 1, pp. 295–303 (2021), DOI: 10.11591/ijpeds.v12.i1.pp295- 303.
  • [10] Cheng J., Chen D., Chen G., Modeling and Compensation for Dead-Time Effect in High Power IGBT/IGCT Converters with SHE-PWM Modulation, Energies, vol. 13, no. 17, 4348 (2020), DOI: 10.3390/en13174348.
  • [11] Li C. et al., Analysis and compensation of dead-time effect considering parasitic capacitance and ripple current, 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, USA, pp. 1501–1506 (2015), DOI: 10.1109/APEC.2015.7104546.
  • [12] Wan W., Yu T., Duan S., Dead-Time Compensation in Active NPC Three-Level Inverters Considering Current Ripple, IEEE Transactions on Transportation Electrification, vol. 9, no. 1, pp. 1189–1199 (2023), DOI: 10.1109/TTE.2022.3164891.
  • [13] Han D., Peng F.Z., Dwari S., Eliminating Dead-Time Effects with Zero-Current Clamping Control for WBG Multilevel Inverters, 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, AZ, USA, pp. 542–548 (2021), DOI: 10.1109/APEC42165.2021.9487434.
  • [14] Piao C., Hung J.Y., Analysis and compensation of Dead-time effect in multi-level diode clamped VSI based on simplified SVPWM, 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), Auckland, New Zealand, pp. 375–380 (2015), DOI: 10.1109/ICIEA.2015.7334142.
  • [15] Miao Z., Wei J., Guo T., Zheng M., Dead-time Compensation Method Based on Field Oriented Control Strategy, IOP Conference Series: Earth and Environmental Science, vol. 358, no. 4, 042049 (2019), DOI: 10.1088/1755-1315/358/4/042049.
  • [16] Jin S., Zhang W., Liu Z., Xie F., Xu Y., Zou J., Direct-axis Dead-time Effect Compensation Strategy Based on Adaptive Linear Neuron Method for PMSM Drives, IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society, Brussels, Belgium, pp. 1–6 (2022), DOI: 10.1109/IECON49645.2022.9968832.
  • [17] Yi-Chieh Pai, Jun-Ping Chang, Ming-Yang Cheng, Tsorng-Juu Liang, Dead-time effects compensation for PMSM drives – an adaptive linear neuron approach, 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 – ECCE Asia), Kaohsiung, Taiwan, pp. 1025–1030 (2017), DOI: 10.1109/IFEEC.2017.7992182.
  • [18] Lang J., Tong C., Zheng P., Liang X., Yuan X., Ren W., Dead-Time Effect Analysis and Compensation for Deadbeat-Direct Torque and Flux Control of PMSMs to Eliminate Steady-State Error, 2022 25th International Conference on Electrical Machines and Systems (ICEMS), Chiang Mai, Thailand, pp. 1–5 (2022), DOI: 10.1109/ICEMS56177.2022.9983020.
  • [19] Jones M., Dujic D., Levi E., Vukosavic S.N., Dead-time effects in voltage source inverter fed multi-phase AC motor drives and their compensation, 2009 13th European Conference on Power Electronics and Applications, Barcelona, Spain, pp. P.1–P.10 (2009).
  • [20] Iqbal A., Levi E., Space vector modulation schemes for a five-phase voltage source inverter, 2005 European Conference on Power Electronics and Applications, Dresden, Germany, 9035837 (2005), DOI: 10.1109/EPE.2005.219194.
  • [21] Dujic D., Levi E., Jones M., Grandi G., Serra G., Tani A., Continuous PWM Techniques for Sinusoidal Voltage Generation with Seven-Phase Voltage Source Inverters, 2007 IEEE Power Electronics Specialists Conference, Orlando, FL, USA, pp. 47–52 (2007), DOI: 10.1109/PESC.2007.4341959.
  • [22] Guzinski J. et al., Sensorless multiscalar control of five-phase induction machine with inverter output filter, 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe), Warsaw, Poland, pp. P.1–P.10 (2017), DOI: 10.23919/EPE17ECCEEurope.2017.8099186.
  • [23] Adamowicz M., Guzinski J., Krzeminski Z., Nonlinear control of five phase induction motor with synchronized third harmonic flux injection, 2015 First Workshop on Smart Grid and Renewable Energy (SGRE), Doha, Qatar, pp. 1–6 (2015), DOI: 10.1109/SGRE.2015.7208727.
  • [24] Morawiec M., Kroplewski P., Odeh C., Nonadaptive Rotor Speed Estimation of Induction Machine in an Adaptive Full-Order Observer, IEEE Transactions on Industrial Electronics, vol. 69, no. 3, pp. 2333–2344 (2022), DOI: 10.1109/TIE.2021.3066919.
  • [25] Volpato Filho C.J., Vieira R.P., Adaptive Full-Order Observer Analysis and Design for Sensorless Interior Permanent Magnet Synchronous Motors Drives, IEEE Transactions on Industrial Electronics, vol. 68, no. 8, pp. 6527–6536 (2021), DOI: 10.1109/TIE.2020.3007101.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13c1da95-9d9c-4dd3-8804-40b40309e57b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.