PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Porosity and hydraulic conductivity estimation of the basaltic aquifer in Southern Syria by using nuclear and electrical well logging techniques

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An alternative approach using nuclear neutron-porosity and electrical resistivity well logging of long (64 inch) and short (16 inch) normal techniques is proposed to estimate the porosity and the hydraulic conductivity (K) of the basaltic aquifers in Southern Syria. This method is applied on the available logs of Kodana well in Southern Syria. It has been found that the obtained K value by applying this technique seems to be reasonable and comparable with the hydraulic conductivity value of 3.09 m/day obtained by the pumping test carried out at Kodana well. The proposed alternative well logging methodology seems as promising and could be practiced in the basaltic environments for the estimation of hydraulic conductivity parameter. However, more detailed researches are still required to make this proposed technique very performed in basaltic environments.
Czasopismo
Rocznik
Strony
765--775
Opis fizyczny
Bibliogr. 47 poz.
Twórcy
autor
  • Atomic Energy Commission of Syria, Damascus, Syria
Bibliografia
  • 1. Archie E (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. American institute of mineral and metal engineering, Technical Publication 1422, Petroleum Technology, pp 8–13
  • 2. Aretouyap Z, Nouayou R, Philippe NN, Asfahani J (2015) Aquifers productivity in the Pan-African context. J Earth Syst Sci 124(3):527–539. doi:10.1007/s12040-015-0561-1
  • 3. Aretouyap Z, Philippe NN, Nouayou R, Assatse WT, Asfahani J (2017) Aquifer porosity in the Pan-African semi-arid context. Environ Earth Sci 76:134. doi:10.1007/s12665-017-6440-0
  • 4. Asfahani J (2007a) Neogene aquifer properties specified through the interpretation of electrical sounding data, Sallamiyeh region, central Syria. Hydrol Process 21:2934–2943. doi:10.1002/hyp.6510
  • 5. Asfahani J (2007b) Geoelectrical investigation for characterizing the hydrogeological conditions in semi-arid region in Khanasser valley, Syria. J Arid Environ 68:31–52. doi:10.1016/j.jaridenv.2006.03.028
  • 6. Asfahani J (2007c) Electrical earth resistivity surveying for delineating the characteristics of ground water in semi arid region in Khanaser Valley, Northern Syria. Hydrol Process 21:1085–1097. doi:10.1002/hyp.6290
  • 7. Asfahani J (2010a) Application of surfacial geoelectrical resistivity technique in hydrogeology domain for characterizing saline groundwater in semi arid regions. In: Benjamin Veress, Jozsi Szigethy (eds) Horizons in earth science research series, vol 1. NOVA Science Publishers, New York, pp 351–381
  • 8. Asfahani J (2010b) Electrical resistivity investigations for guiding and controlling fresh water well drilling in semi arid region in Khanasser Valley, Northern Syria. Acta Geophys. doi:10.2478/s11600-010-0031-8
  • 9. Asfahani J (2011) Basalt characterization by means of nuclear and electrical well logging techniques. Case study from Southern Syria. Appl Radiat Isot 69:641–647. doi:10.1016/j.apradiso.2010.12.008
  • 10. Asfahani J (2012) Quaternary aquifer transmissivity in semi arid region in Khanasser valley, Northern Syria. Acta Geophys 60(4):1143–1158. doi:10.2478/s11600-012-0016-x
  • 11. Asfahani J (2013) Groundwater potential estimation deduced from vertical electrical sounding measurements in the semi-arid Khanasser valley region, Syria. Hydrol Sci J 58(2):468–482. doi:10.1080/02626667.2012.751109
  • 12. Asfahani J (2014) Statistical factor analysis technique for characterizing basalt through interpreting nuclear and electrical well logging data (case study from Southern Syria). Appl Radiat Isot 84:33–39. doi:10.1016/j.apradiso.2013.09.019
  • 13. Asfahani J (2016) Hydraulic parameters estimation by using an approach based on vertical electrical soundings (VES) in the semi-arid Khanasser valley region, Syria. J Afr Earth Sci 117:196–206. doi:10.1016/j.jafrearsci.2016.01.018
  • 14. Asfahani J (2017) Fractal theory modeling for interpreting nuclear and electrical well logging data and establishing lithological cross section in basaltic environment (case study from southern Syria). Appl Radiat Isot 123:26–31. doi:10.1016/j.apradiso.2017.02.020
  • 15. Asfahani J, Abdul Ghani B (2012) Automated interpretation of nuclear and electrical well loggings for basalt characterization (case study from southern Syria). Appl Radiat Isot 70:2500–2506. doi:10.1016/j.apradiso.2012.05.023
  • 16. Asfahani J, Abou Zakhem B (2013) Geoelectrical and hydrochemical investigations for characterizing the salt water intrusion in the Khanasser valley, northern Syria. Acta Geophys 61(2):422–444. doi:10.2478/s11600-012-0071-3
  • 17. Asfahani J, Abdul Ghani B, Ahmad Z (2015) Basalt identification by interpreting nuclear and electrical well logging measurements using fuzzy technique (case study from southern Syria). Appl Radiat Isot 105:92–97. doi:10.1016/j.apradiso.2015.07.052
  • 18. Bear J (1972) Dynamics of fluids in porous media. Elsevier, New York
  • 19. Chappelier D (1992) Well logging in hydrogeology. A.A. Balkema Publishers, A.A/ Taylor and Francis, The Netherlands
  • 20. Chapuis RP, Aubertin M (2003) Predicting the coefficient of permeability of soils using the Kozeny–Carman equation. EPM-RT2003. Department CGM, Ecole polytechnique de Montreal, Canada
  • 21. Csókás J (1995) Determination of water discharge and quality using geophysical well logs (in Hungarian). Magyar Geofizika 35(4):176–203
  • 22. Domenico PA, Schwartz FW (1990) Physical and chemical hydrogeology. John Wiley & Sons, New York, p 525
  • 23. Everitt B (2011) Cluster analysis. Wiley, Chichester. ISBN 9780470749913
  • 24. Ferré TPA, Binley A, Geller J, Hill E (2005) Hydrogeophysical methods in the laboratory scale, in hydrogeophysics. In: Rubin Y, Hubband S (eds) Water science and technology library. Springer, New York, pp 441–463
  • 25. Guérin R (2005) Borehole and surface based hydrogeophysics. Hydrogeol J 13:251–254. doi:10.1007/s10040-004-0415-4
  • 26. Helm-Clark CM, Rodgers DW, Smith RP (2004) Borehole geophysical techniques to define stratigraphy, alteration and aquifers in basalt. J Appl Geophys 55:3–38. doi:10.1016/j.jappgeo.2003.06.003
  • 27. Kalerisa VK, Ziogasa AI (2015) Estimating hydraulic conductivity profiles using borehole resistivity logs. Proc Environ Sci 25:135–141. doi:10.1016/j.proenv.2015.04.019
  • 28. Keller GV (1988) Rock and mineral properties. In: Nabighian MN (ed) Electromagnetic methods in applied geophysics, 1: theory. Society of Exploration Geophysicists, Tulsa, pp 13–51
  • 29. Khalil MA, Santos FAM (2013) Hydraulic conductivity estimation from resistivity logs: a case study in Nubian sandstone aquifer. Arab J Geosci 6(1):205–212. doi:10.1007/s12517-011-0343-2
  • 30. Korb M, Mares S, Paillet F (2005) Geophysical well logging: borehole geophysics for hydrological studies: principles and applications in hydrogeophysics. In: Rubin Y, Hubbard SS (eds) Water science and technology library. Springer, New York, pp 291–333
  • 31. Kruseman GP, de Ridder NA (1990) Analysis and evaluation of pumping test data. International Institute for Land Reclamation and Improvement, Second Edition. Wageningen. (completely revised)
  • 32. Kwader T (1986) Use of geophysical logs for determining formation water quality. Groundwater 24:11–15. doi:10.1111/j.1745-6584.1986.tb01453.x
  • 33. Niels BC, Kurt IS (1998) Surface and borehole electric and electromagnetic methods for hydrogeological investigations. Eur J Environ Eng Geophys 3:75–90
  • 34. Niwas S, Celik M (2012) Equation estimation of porosity and hydraulic conductivity of Ruhrtal aquifer in Germany using near surface geophysics. J Appl Geophys 84:77–85. doi:10.1016/j.jappgeo.2012.06.001
  • 35. Pengra DB, Wong PZ (1999) Low-frequency AC electrokinetics. Colloids Surf Phys Chem Eng Aspects 159(2–3):283–292. doi:10.1016/S0927-7757(99)00287-3
  • 36. Ponikarov VP (ed) (1966) The geological map of Syria, scale 1:200,000, sheets I-37-XIX and I-36-XXIV. Ministry of Industry, Damascus
  • 37. Robertson Geologging limited (1994) PC logger system II. Logging Oper Man Vers 2:3
  • 38. Sanchez V, Guadagnini XA, Carrera J (2006) Representative hydraulic conductivities in saturated groundwater flow. Rev Geophys 44:3002
  • 39. Schön JH (1996) Physical properties of rocks—fundamentals and principles of geophysics. In: Helbig K, Treitel S (eds) Handbook of geophysical exploration—seismic exploration. Elsevier, Pergamon
  • 40. Sikandar P, Christen EW (2012) Geoelectrical sounding for the estimation of hydraulic conductivity of alluvial aquifers. Water Resour Manag 26(5):1201–1215. doi:10.1007/s11269-011-9954-3
  • 41. Slater L (2007) Near surface electrical characterization of hydraulic conductivity: from petrophysical properties to aquifer geometries—a review. Surv Geophys 28(2):169–197. doi:10.1007/s10712-007-9022-y
  • 42. Soupios P, Kouli M, Vallianatos F, Vafidis A, Stavroulakis G (2007) Estimation of aquifer hydraulic parameters from surfacial geophysical methods: a case study of Keritis basin in Chania (Crete, Greece). Hydrology 338:122–131. doi:10.1016/j.jhydrol.2007.02.028
  • 43. Szabó NP (2011) Shale volume estimation based on the factor analysis of well logging data. Acta Geophys 59(5):935–953. doi:10.2478/s11600-011-0034-0
  • 44. Szabó NP, Dobróka M (2017) Robust estimation of reservoir shaliness by iteratively reweighted factor analysis. Geophysics 82(2):69–83. doi:10.1190/GEO2016-0393.1
  • 45. Vinegar HJ, Waxman MH (1984) Induced polarization of shaly sands. Geophysics 49(8):1267–1287. doi:10.1190/1.1441755
  • 46. Waxman MH, Smits LJM (1968) Electrical conductivity in oil-bearing shaly sands. SPE J 8:107–122
  • 47. Worthington PF (1993) The uses and abuses of the Archie equations: the formation factor-porosity relationship. J Appl Geophys 30:215–228. doi:10.1016/0926-9851(93)90028-W
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13bf3d4d-c23b-433a-a96b-4ce9b019659b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.