PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Diffractive wavefront correction of remote sensing systems based on pulsed laser diodes

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A variety of optoelectronic devices (rangefinders, velocity meters, terrestrial scanners, lidars, free space optics communication systems and others) based on semiconductor laser technology feature low-quality and highly asymmetric beams. It results from optical characteristics of the applied high-peak-power pulsed laser sources, which in most cases are composed of several laser chips, each containing one or a few active lasers. Such sources cannot be considered as coherent, so the resultant beam is formed by the superposition of many optically uncorrelated sub-sources. Far-field distribution of laser spots in such devices corresponds to the shape of laser emitting area, which instead of desired symmetry shows layout composed of one or several discrete lines or rectangles. In some applications, especially if small targets are concerned, it may be crucial to provide more symmetrical and uniform laser beam cross-section. In the paper, the novel strategy of such correction, combining coherent and incoherent approaches, is presented. All aspects of technological implementations are discussed covering general theoretical treatment of the problem, diffractive optical element (DOE) design in the form of computer generated hologram (CGH), its fabrication and testing in case of selected laser module beam correction.
Twórcy
  • Institute of Optoelectronics, Military University of Technology, 2 Gen. Sylwestra Kaliskiego St., 00–908 Warsaw, Poland
autor
  • Institute of Optoelectronics, Military University of Technology, 2 Gen. Sylwestra Kaliskiego St., 00–908 Warsaw, Poland
autor
  • Institute of Optoelectronics, Military University of Technology, 2 Gen. Sylwestra Kaliskiego St., 00–908 Warsaw, Poland
autor
  • Institute of Optoelectronics, Military University of Technology, 2 Gen. Sylwestra Kaliskiego St., 00–908 Warsaw, Poland
  • Institute of Lightweight Engineering and Polymer Technology, Technische Universität Dresden 3 Holbein St., Dresden, 01307, Germany
Bibliografia
  • 1. H. Sun, Laser Diode Beam Basics Manipulations and Characterizations, 69-76, Springer, USA, 2012.
  • 2. A. Schilling, H.P. Herzig, L. Stauffer, U. Vokinger, and M. Rossi, “Efficient beam shaping of linear, high-power diode lasers by use of micro-optics”, Appl. Optics 40, 5852-5859 (2001).
  • 3. S.H. Wang, C.J. Tay, C. Quan, and H.M. Shang, “Collimating of diverging laser diode beam using graded-index optical fiber”, Opt. Laser. Eng. 34, 121-127 (2000).
  • 4. T. Czyszanowski and W. Nakwaski, “How exact are simplified scalar approaches to optical fields in oxide-confined stripe-geometry diode lasers?”, Opto-Electron. Rev. 15, 88-97 (2007).
  • 5. J.A. Harder and M.W. Sprague, “Astigmatic laser beam shaping using intentionally introduced optical aberrations”, Proc. SPIE 7834, 78340W (2010).
  • 6. M. Born and E. Wolf, Principles of Optics, 547-553, Cambridge University Press, USA, 2003.
  • 7. D. Fish, A. Brinicombe, E. Pike, and J. Walker, “Blind deconvolution by means of the Richardson-Lucy algorithm”, J. Opt. Soc. Am. A 12, 58-65 (1995).
  • 8. W. Goodman, Introduction to Fourier Optics, 74-84, Roberts & Co, USA, 2005.
  • 9. R.N. Bracewell, Fourier Analysis and Imaging, 402-411, Springer, USA, 2004.
  • 10. W.J. Smith, Modern Optical Engineering, 392-400, 4-th Ed., Me Graw Hill, USA, 2008.
  • 11. R. Fischer, Optical System Design, 35-49 , 2-nd Ed., SPIE Press, USA, 2008.
  • 12. F. Wyrowski, “Design theory of diffractive elements in the paraxial domain”, J. Opt. Soc. Am. A 10, 1553-1561 (1993).
  • 13. R.W. Gerchberg and W.O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures”, Optik 35, 237-250 (1972).
  • 14. J.R. Fienup, “Phase retrieval algorithms: a comparison”, Appl. Optics 21, 2758-2769 (1982).
  • 15. P. Birch, R. Young, M. Farsari, C. Chatwin, and D. Budget, “A comparison of the iterative Fourier transform method and evolutionary algorithms for the design of diffractive optical elements”, Opt. Laser Eng. 33, 439-448 (2000).
  • 16. M. Makowski, M. Sypek, A. Kołodziejczyk, G. Mikula, and J. Suszek, “Iterative design of multi-plane holograms: experiments and applications,” Opt. Eng. 46, 045802 (2007).
  • 17. O. Ripoll, K. Ville, H.P. Herzig, “Review of iterative Fourier-transform algorithms for beam shaping applications,” Opt. Eng. 43, 2549-2556 (2004).
  • 18. P. Memmolo, L. Miccio, F. Merola, A. Paciello, V. Embrione, S. Fusco, P. Ferraro, and P.A. Nett, “Investigation on specific solutions of Gerchberg-Saxton algorithm”, Opt. Laser. Eng. 52,206-211 (2014).
  • 19. A. Sobczyk, M. Sypek, A. Siemion, M. Makowski, A. Siemion, J. Suszek, and A. Kołodziejczyk, „Uniform illumination by diffractive shaping of independent light beams”, Opto-Electron. Rev. 19, 189-192 (2011).
  • 20. F. Wyrowski and O. Bryngdahl, “Iterative Fourier-transform algorithm applied to computer Holography”, J. Opt. Soc. Am. A 5, 1058-1065 (1988).
  • 21. http://www.mathworks.com/products/matlab/
  • 22. http://www.radiantzemax.com
  • 23. M.T. Gale and M. Rossi, “Continuous-relief diffractive lenses and microlens arrays” in Diffractive Optics for Industrial and Commercial Applications 4, pp. 125-173, edited by J. Turunen and F. Wyrowski, Akademie-Verlag, Germany, 1997.
  • 24. http://www.kinemax.pl
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13bae2fc-d5a2-475b-9881-fa8756318dec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.