PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Próba oceny produktywności ekosystemu w warunkach polowych Wielkopolski

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
An Attempt to Evaluate the Productivity of Ecosystems Under Field Conditions of Wielkopolska
Języki publikacji
PL
Abstrakty
EN
The Eddy Covariance technique has been applied for corn field NEE estimation. The Smith, Michaelis-Menten and Misterlich formulas has been used for calculation of net ecosystem exchange (NEE) values between corn canopy and the atmosphere. These approaches have been applied for estimation of temeparture and radiation modification impact on the corn field productivity. The NEE has been evaluated in the first part of this paper and then the relation of NEE runs and elements that influence the NEE values has been summarized. In another part the analysis of NEE under thermal and radiative conditions has been presented. The Michaelis-Menten model has been found as the most distinct one for the measurements of the relationship. This model indicated that the highest NEE value (NEE = 10.0 µmol m-2 s-1) has been found under combination of the low radiation and high temperature conditions. The lowest value of NEE has been estimated under the highest PPFD and lowest Ta amount. The applied models have confirmed relationship between NEE, PPFD and Ta. All three models confirmed the fact that the lowest ecosystem productivity is found under high radiation input. The accumulated NEE values were compared with the real values according to the Smith, Michaelis-Menten and Misterlich equations. The results of the Michaelis-Menten equation and Misterlich were the most similar to the real cumulative NEE values. The theoretical change of thermal (0.5°C increase) and radiation (4% decrease) resulted in tested higher CO2 sequesteration from the atmosphere.
Rocznik
Strony
2481--2495
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
  • Uniwersytet Przyrodniczy, Poznań
  • Uniwersytet Przyrodniczy, Poznań
  • Uniwersytet Przyrodniczy, Poznań
autor
  • Uniwersytet Przyrodniczy, Poznań
autor
  • Uniwersytet Przyrodniczy, Poznań
autor
  • Uniwersytet Przyrodniczy, Poznań
  • Global Change Research Center, AS CR, v.v.i. Brno, Czechy
Bibliografia
  • 1. Baldocchi D., Falge E., Gu L., Olson R., Hollinger D., Running S., ANthoni P., Bernhofer CH., Davis K., Evans R., Fuentes J., Goldstein A., Katul G., Law B., Lee X., Malhi Y., Meyers T., Munger W., Oechel W., U Paw K.T., Pilegaard K., Schmid H.P., Valentini R.,Verma S., Vesala T., Wilson K., Wofsy S.: FLUXNET. A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor and energy flux densities. Bulletin of the American Meteorological Society. Vol. 82. No. 11. 2415–2434 (2001).
  • 2. Baldocchi D.D.: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology. Vol. 9. Iss. 4, 479–492 (2003).
  • 3. Bellisario L.M., Moore T.R., Bubier J.L.: Net ecosystem CO2 exchange in a boreal peatland, northern Manitoba. Ecoscience. Vol. 5(4), 534–541 (1998).
  • 4. Black T.A., Chen W.J., Barr A.G., Arain M.A., Chen Z., Nesic Z., Hogg E.H., Neumann H.H., Yang P.C.: Increased carbon sequestration by a boreal deciduous forest in year with a warm spring. Geophys. Res. Lett. 27, 1271–1274 (2000).
  • 5. Black T.A., den Hartog G., Neumann H.H., Blanken P.D., Yang P.C., Russell C., Nesic Z., Lee X., Chen S.G., Staebler R., Novak M.D.: Annual cycles of water vapour and carbon dioxide fluxes in and above a boreal aspen forest. Global Change Biology, 2, 101–111 (1996).
  • 6. Burba G.G., Anderson D.J.: A brief practical guide to eddy covariance flux measurements: principles and workflow examples for scientific and industrial applications. Version 1.01. Lincoln, USA. LI-COR Biosciences. ss. 211 (2010).
  • 7. Canadell J.G., Pataki D.E., Pitelka L.F. (Eds.): Terrestrial Ecosystems in a Changing World – chapter 24: Responses of High Latitude Ecosystems to Global Change: Potential Consequences for the Climate System (McGuire A.D., Chapin F.S.III, Wirth C., Apps M., Bhatti J., Callaghan T., Christensen T.R., Clein J.S., Fukuda M., Maximov T., Onuchin A., Shvidenko A., Vaganov E.), Global Change, 2007.
  • 8. Chojnicki B.H., Urbaniak M., Józefczyk D., Augustin J.: Measurement of gas and heat fluxes at Rzecin wetland. In: Wetlands: Monitoring, Modeling and Menagement. (eds) Okruszko et al., Taylor & Francis Group, London, 125–131 (2007).
  • 9. Gilmanov T.G., Verma S.B., Sims P.L., Meyers T. P., Bradford J.A., Burba G.G., Suyker A.E.: Gross primary productionand light response parameters of four Southern Plains ecosystems estimated using long-term CO2-flux tower measurements. Global Biogeochemical Cycles, 17, 1071 (2003).
  • 10. Gu S., Tang Y., Du M., Kato T., Li Y., Cui Z., Zhao X.: Short term variation of CO2 fluf in relation to environment al controls in an alpine meadowon the Qinghai_tibetan Plateau. Journal of Geophysical Research, 108, 4670, (2003).
  • 11. Huxman T.E., Turnipseed A.A., Sparks J.P., Harley P.C., Monson R.K.: Temperature as a control over ecosystem CO2 fluxes in a high elevation, subalpine forest. Oecologia, 134, 537–546 (2003).
  • 12. Józefczyk D.: Dobowy przebieg strumieni dwutlenku węgla i pary wodnej w krajobrazie rolniczym. Rozprawa Doktorska, Akademia Rolnicza w Poznaniu, 2005.
  • 13. Kato T., Tang Y., Gu S., Hirota M., Du M., Li Y., Zhao X: Temperature and biomass influences on interannual chan ges in CO2 exchange in an alpinie meadow on the Qinghai_Tibetan Plateau. Global Change Biology, 12, 1285–1298 (2006).
  • 14. Kettunen R.: N2O, CH4 and CO2 fluxes from agricultural organic and mineral soils grown with Phleum pretense and mixed Trifolium pratense/P. pretense under elevated CO2 concentration. [online] PhD Dissertations. Joensuu. University of Joensuu, 2007.
  • 15. Kirschbaum M.U.F., Eamus D., Gifford R.M., Roxburgh S.H., Sands P.J.: Definitions of some ecological terms commonly used in carbon accounting. In: Net Ecosystem Exchange. [online] Pr. zbior. Red. M.U.F Kirschbaum, R. Mueller. Canberra, Australia. Cooperative Research Centre for Greenhouse Accounting, 2001.
  • 16. Kramer K., Leinonen,I., Loustau D.: The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview. Int. J. Biometeorol 44, 67–75 (2000).
  • 17. Law B.E., Falge E., Gu L., Baldocchi D.D., Bakwin P., Berbigier P., Davis K., Dolman A.J., Falk M., Fuentes J.D., Goldstein A., Granier A., Grelle A., Hollinger D., Janssens I.A., Jarvis P., Jensen N.O., Katul G., Mahli Y., Matteucci G., Meyers T., Monson R., Munger W., Oechel W., Olson R., Pilegaard K., Paw U K.T., Thorgeirsson H., Valentini R., Verma S., Vesala T., Wilson K., Wofsy S.: Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology, 113, 97–120 (2002).
  • 18. Lovejoy T.: Climate change and biodiversity. Rev. sci. tech. Off. int. Epiz., 27 (2) (2008).
  • 19. Lovett G.M., Cole J.J., Pace M.L.: Is net ecosystem production equal to ecosystem carbon accumulation? Ecosystems. Vol. 9. Iss. 1, 152–155 (2006).
  • 20. Michaelis L., Menten M.L.: Die Kinetik der Invertinwirkung. Biochemistry Zeitung. Vol. 49, 333–369 (1913).
  • 21. Perrings C.: Biodiversity, Ecosystem Services, and Climate Change The Economic Problem. Environment Department Papers, November, 2010.
  • 22. Reicosky D., Archer D.W.: Moldboard plow tillage deptand short-term carbon dioxide release. Soil and Tillage Research 94, 109–121 (2007).
  • 23. Reynolds O.: On the dynamical theory of incompressible viscous fluids and the determination of criterion. Philosophical Transactions of Royal Society of London, A174, 935–982 (1895).
  • 24. Rogiers N.: Impact of site history and land-management on CO2 fluxes at a grassland in the Swiss Pre-Alps. [online] PhD dissertation. Bern, Switzerland. Institute of Geography, University of Bern, 2006.
  • 25. Saito M., Kato T., Tang Y.: Temperature controls ecosystem CO2 exchange of an alpine meadow on the northeastern Tibetan Plateau. Global Change Bilogy, 15, 221–228 (2009).
  • 26. Smetacek V. and Nicol S.: Polar ocean ecosystems in a changing world. Nature, Vol. 437, 15 September, 2005.
  • 27. Smith P., Martino D., Cai Z., Gwary D., Janzen H., Kumar P., Mccarl B., Ogle S., O’mara F.,Rice C., Scholes B., Sirotenko O.: Agriculture. [online] W: Climate change 2007: mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Praca zbiorowa: Red. B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer. Cambridge. New York. Cambridge University Press, 2007.
  • 28. Smith W.N., Rochette P., Monreal C., Desjardins R.L., Pattey E., Jaques A.: The rate of carbon change in agricultural soils in Canada at the landscape level. Canadian Journal of Soil Science. Vol. 77(2), 219–229 (1997).
  • 29. Tebrügge F., Epperlein J.: Position paper: the importance of the conservation agriculture within the framework of the climate discussion. [online] Brussels. ECAF, 2011.
  • 30. Urbaniak M.: Ocena sezonowej zmienności strumieni dwutlenku węgla i pary wodnej na terenach podmokłych metodą kowariancji wirów. Praca doktorska. Poznań. Katedra Agrometeorologii, Wydział Melioracji i Inżynierii Środowiska, AR., 2006.
  • 31. Urbaniak M., Chojnicki B.H., Danielewska A., Baran M., Olejnik J.: Estimation of net carbon and water Exchange at a Scots pine forest stand in Poland. Acta Agrophysica 179, 26–40 (2010).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13b5c875-fe41-49f6-9b5c-2fa3ff1094c2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.