PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reinvestigations of the Li2O–Al2O3 system. Part I: LiAlO2 and Li3AlO3

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Reinvestigations of the Li2O–Al2O3 system focused on the synthesis and properties of LiAlO2 and Li3AlO3 phases have been performed with the help of XRD and IR measuring techniques and Li2CO3, LiOH.H2O, Al2O3-sl., α-Al2O3, Al(NO3)3.9H2O and boehmite as reactants. Results of investigations have shown the formation of α-, β-, and γ- polymorphs of LiAlO2. It was found that only the use of LiOH.H2O as a reactant yields to β-LiAlO2 as a reaction product. On the other hand, it was proved that Li3AlO3 does not form in the Li2O–Al2O3 system. A new method for the synthesis of α-LiAlO2 was developed, consisting in grinding the mixture of Li2CO3 and Al(NO3)3.9H2O and heating the obtained paste at the temperature range of 400–600°C. The IR spectroscopy was used to characterize obtained phases.
Słowa kluczowe
Rocznik
Strony
30--36
Opis fizyczny
Bibliogr. 63 poz., rys., tab.
Twórcy
autor
  • West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Department of Inorganic and Analytical Chemistry, Piastow Avenue 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Department of Inorganic and Analytical Chemistry, Piastow Avenue 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Department of Inorganic and Analytical Chemistry, Piastow Avenue 42, 71-065 Szczecin, Poland
Bibliografia
  • 1. Rebouças, L.B., Souza, M.T., Raupp-Pereira1, F., & Novaes de Oliveira, A.P. (2019). Characterization of Li2O-Al2O3-SiO2 glass-ceramics produced from a Brazilian spodumene concentrate. Cerâmica 65, 366–377. DOI: 10.1590/0366-69132019653752699.
  • 2. Ahmadi, Moghadam, H. & Hossein, Paydar, M. (2016). The Effect of Nano CuO as Sintering Aid on Phase Formation, Microstructure and Properties of Li2O-Stabilized β″-Alumina Ceramics. J. Ceram. Sci. Tech., 07(04), 441–446. DOI: 10.4416/JCST2016-00075.
  • 3. Shackelford, J.F. & Doremus, R.H. (2008). Ceramic and glass materials. Structure, properties and processing. Springer Science+Business Media LLC New York. ISBN 978-0-387-73361-6.
  • 4. Dhabekar, B., Raja, E.A., Gundu Rao, T.K., Kher, R.K. & Bhat, B.C. (2009). Thermoluminescence, optically stimulated luminescence and ESR studies on LiAl5O8:Tb. Indian. J. Pure Ap. Phy., 47, 426–428.
  • 5. Mandowska, E., Mandowski, A., Bilski, P., Marczewska, B., Twardak, A. & Gieszczyk, W. (2015). Lithium aluminate – a new detector for dosimetry. Prz. Elektrotech. 91(9), 117–120 (in Polish).
  • 6. Gao, J., Shi, S., Xiao, R. & Li, H. (2016). Synthesis and ionic transport mechanisms of α-LiAlO2, Solid State Ionics, 286, 122–134.DOI: 10.1016/j.ssi.2015.12.028.
  • 7. Özkan, G. & Incirkuş Ergençoglu, V. (2016). Synthesis and characterization of solid electrolyte structure material (LiAlO2) using different kinds of lithium and aluminum compounds for molten carbonate fuel cells. Indian J. Chem. Technol. 23, 227–231.
  • 8. Kim, J.E., Patil, K.Y., Han, J., Yoon, S.P., Nam, S.W., Lim, T.H., Hong, S.A., Kim, H. & Lim, H.Ch. (2009). Using aluminum and Li2CO3 particles to reinforce the α-LiAlO2 matrix for molten carbonate fuel cells. Internat. J. Hydrogen Energy 34(22), 9227–9232. DOI: 10.1016/j.ijhydene.2009.08.069.
  • 9. Ducan, Y. (2021). Theoretical Investigation of the CO2 Capture Properties of γ-LiAlO2 and α-Li5AlO4. Micro Nanosyst. 13, 32–41.DOI: 10.2174/1876402911666190913184300.
  • 10. Ávalos-Rendón, T., Casa-Madrid, J. & Pfeiffer, H. (2009). Thermochemical Capture of Carbon Dioxide on Lithium Aluminates (LiAlO2 and Li5AlO4): A New Option for the CO2 Absorption. J. Phys. Chem. A, 113, 6919–6923. DOI: 10.1021/jp902501v.
  • 11. Raja, M., Sanjeev, G., Kumar, T.P. & Stephan, A.M. (2015). Lithium aluminate-based ceramic membranes as separators for lithium-ion batteries. Ceram. Int. 41, 3045–50. DOI: 10.1016/j.ceramint.2014.10.142.
  • 12. Fouad, O.A., Farghaly, F.I. & Bahgat, M. (2007). A novel approach for synthesis of nanocrystalline γ-LiAlO2 from spent lithium-ion batteries. J. Anal. Appl. Pyrolysis. 78, 65–69. DOI: 10.1016/j.jaap.2006.04.002.
  • 13. Pollard, V.A., Young, A., McLellan, R., Kennedy, A.R., Tuttle, T., Robert, E. & Mulvey, R.E. (2019). Lithium-Aluminate-Catalyzed Hydrophosphination Applications. Angew. Chem. Int. Ed. 58, 1229–12296. DOI: 10.1002/anie.201906807.
  • 14. Indris, S. & Heitjans, P. (2006). Local electronic structure in a LiAlO2 single crystal studied with 7Li NMR spectroscopy and comparison with quantum chemical calculations. Phys. Rev. B 74, 245120-1-5. DOI: 10.1103/PhysRevB.74.245120.
  • 15. Duan, Y., Sorescu, D.C., Jiang, W. & Senor, D.J. (2020) Theoretical study of the electronic, thermodynamic, and thermo-conductive properties of γ-LiAlO2 with 6Li isotope substitutions fortritium production. J. Nucl. Mater. 530, 151963. DOI: 10.1016/j.nucmat.2019.151963.
  • 16. Rasneur, B. (1985). Tritium breeding material γ-LiAlO2. Fusion Technol. 8, 1909–1914. DOI: 10.13182/FST85-A40040.
  • 17. Liu, Y.Y., Billone, M.C., Fischer, A.K., Tam, S.W., Clemmer, R.G. & Hollenberg, G.W. (1985). Solid tritium breeder materials Li2O and LiAlO2 - a data-base review. Fusion Sci. Technol. 8, 1970–1984. DOI: 10.13182/FST85-A24573.
  • 18. Morley, N.B., Abdou, M.A., Anderson, M., Calderoni, P., Kurtz, R.J., Nygren, R., Raffray, R., Sawan, M., Sharpe, P., Smolentsev, S., Willms, S. & Ying, A.Y. (2006). Overview of fusion nuclear technology in the US. Fusion Eng. Des. 81, 33–43. DOI: 10.1016/j.fusengdes.2005.06.359.
  • 19. Strickler, D.W. & Roy, R. (1961). Studies in the System Li2O–Al2O3–Fe2O3–H2O. J. Am. Ceram. Soc. 44, 5, 225–230. DOI: 10.1111/j.1151-2916.1961.tb15365.x.
  • 20. Lejus, A.M. & R. Collongues, R. (1962). Sur la structure les propriétés des aluminates de lithium. Chimie Minérale 2005–2007.
  • 21. Kriens, M., Adiwidjaja, G., Guse, W., Klaska, K.H., Lathe, C. & Saalfeld, H. (1996). The crystal structures of LiAl5O8 and Li2Al4O7. N. Jb. Miner. Mh. 8, 344–350.
  • 22. Hatch, R.A. (1943). Phase equilibrium in the system: Li2O–Al2O3–SiO2. Am. Mineral. 28, 471–496. DOI: 10.1111/j.1151-2916.1985.tb15280.x.
  • 23. Cook, L.P. & Plante, E.R. (1992). Phase Diagram of the System Li2O–Al2O3. Ceram. Trans. 27, 193–222.
  • 24. Byker, H.J., Eliezer, I., Eliezer, N. & Howald, R.A. (1979). Calculation of a Phase Diagram for LiO0.5–AlO1.5 System. J. Phys. Chem. 83, 18, 2349–2355. DOI: 10.1021/j100481a009.
  • 25. Konar, B., Van Ende, M.A. & Junh, I.H. (2018). Critical Evaluation and Thermodynamic Optimization of the Li2O-Al2O3 and Li2O–MgO–Al2O3 Systems. Metall. Mat. Trans. B 49, 2917–2944. DOI: 10.1007/s11663-018-1349-x.
  • 26. Marezio, M. & Remeika, J.P. (1966). High-pressure synthesis and crystal srtucture of α-LiAlO2. J. Chem. Phys. 44, 3143-4. DOI: 10.1063/1.1727203.
  • 27. Lehmann, H.A. & Hesselbrarth, H.Z. (1961). Uber eine neue Modifikation des LiAlO2. Anorg. Allg. Chem. 313, 117–120.DOI: 10.1002/zaac.19613130110.
  • 28. Dronskowski, R. (1993). Reactivity and acidity of Li in LiAlO2 phases. Inorg. Chem. 32, 1–9. DOI: 10.1021/ic00053a001.
  • 29. Poepplmeler, K.R., Chiang, C.K. & Kipp, D.O. (1988). Synthesis of High-Surface-Area α-LiAlO2. Inorg. Chem. 27, 4523–4524. DOI: 10.1021/ic00298a002.
  • 30. Thery, J. (1961). Structure and properties of alkaline aluminates. Bull. Soc. Chim. Fr. 973–5.
  • 31. Marezio, M. (1965). The Crystal Structure of LiGaO2. Acta Cryst. 18, 481–484. DOI: 10.1107/S0365110X65001068.
  • 32. Marezio, M. (1965). The Crystal Structure and Anomalous Dispersion of γ-LiAlO2. Acta Cryst. 19, 396–400. DOI: 10.1107/S0365110X65003511.
  • 33. Li, X., Kobayashi, T., Zhang, F., Kimoto, K. & Sekine, T. (2004). A new high-pressure phase of LiAlO2. J. Solid State Chem. 177, 1939–1943. DOI: 10.1016/j.jssc.2003.12.014.
  • 34. Lei, L., He, D., Zou, Y. & Zhang, W. (2008). Phase transitions of LiAlO2 at high pressure and high temperature. J. Solid State Chem. 181, 1810–1815. DOI: 10.1016/j.jssc.2008.04.006.
  • 35. Chang, C.H. & Margrave, J.L. (1968). Highpressure-high temperature synthesis. III. Direct synthesis of new high-pressure forms of LiAlO2 and LiGaO2 and polymorphism in LiMO2 compounds (M=B, Al, Ga). J. Amer. Chem. Soc. 90, 2020–2022. DOI: 10.1021/ja01010a018.
  • 36. Debray, L. & Hardy, A.C.R. (1960). Contribution a Vetude structurale des aluminates de lithium. Hebd. Seances Acad. Sci. 251, 725–726.
  • 37. Waltereit, P., Brandt, O., Trampert, A., Grahn, H.T., Menniger, J., Ramsteiner, M.,M. Reiche, M. & Ploog, K.H. (2000). Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 406, 865–868. DOI: 10.1038/35022529.
  • 38. Wiedemann, D., Indris, S., Meyen, M. & Pedersen, B. (2016) Single-crystal neutron diffraction on γ-LiAlO2: Structure determination and estimation of lithium diffusion pathway. Zeitschrift für Kristallographie – Crystalline Materials. 231(3), 189–193. DOI: 10.14279/depositonce-5480.
  • 39. Ha, N.T.T., Van Giap, T. & Thanh, N.T. (2020). Synthesis of lithium aluminate for application in radiation dosimetry. Mater. Lett. 267, 127506. DOI: 10.1016/j.matlet.2020.127506.
  • 40. Jimenez-Becerril, J. & Garcia-Sosa, I. (2011). Synthesis of lithium aluminate by thermal decomposition of a lithium dawsonite-type precursor. J. Ceram. Process. Res. 12, 52–56.
  • 41. Heo, S.J., Batra, R., Ramprasad, R. & Singh, P. (2018). Crystal morphology and phase transformation of LiAlO2: combined experimental and first-principles Studies. J. Phys. Chem. C 222, 28797–28804. DOI: 10.1021/acs.jpcc.8b09716.
  • 42. Patil, K.Y., Yoon, S.P., Han, J., Lim, T.H., Nam, S.W. & Oh, I.H. (2011). The effect of lithium addition on aluminum-reinforced α-LiAlO2 matrices for molten carbonate fuel cells. Int. J. Hydrog. Energy, 36, 6237–6247. DOI: 10.1016/j.ijhydene.2011.01.161.
  • 43. Park, J.S., Meng, X., Elam, J.W., Hao, S., Wolverton, Ch., Kim, Ch. & Cabana, J. (2014). Ultrathin Lithium-Ion Conducting Coatings for Increased Interfacial Stability in High Voltage Lithium-Ion Batteries. Chem. Mater. 26, 3128–3134. DOI: 10.1021/cm500512n.
  • 44. Cheng, F., Xin, Y., Huang, Y., Chen, J., Zhou, H. & Zhang, X. (2013). Enhanced electrochemical performances of 5 V spinel LiMn1.58Ni0.42O4 cathode materials by coating with LiAlO2. J. Power Sources. 239, 181–188. DOI: 10.1016/j.jpowsour.2013.03.143.
  • 45. Cao, H., Xia, B., Zhang, Y., Xu, N. (2005). LiAlO2-coated LiCoO2 as cathode material for lithium ion batteries. Solid State Ionics. 176, 911–914. DOI: 10.1016/j.ssi.2004.12.001.
  • 46. Danek, V., Tarniowy, M. & Suski, L. (2004) Kinetics of the α → γ phase transformation in LiAlO2 under various atmospheres within the 1073–1173 K temperatures range. J. Mater. Sci. 39, 2429–2435. DOI: 10.1023/B:JMSC.0000020006.46296.04.
  • 47. Lejus, A.M. (1964). Sur la formation a haute temperature de spinelles non stechiométriques et de phases derivées dans plusieurs systémes d’oxydes a base d’alumina et dans le systéme alumina-nitrure d’aluminum. Rev. Hautes Tempér. et Réfract., 1, 53–95.
  • 48. Hummel, F.A., Sastry, B.S.R. & Wotring, D. (1958). Studies in Lithium Oxide Systems: II, Li2O·Al2O3–Al2O3. J. Am. Ceram. Soc. 41, 3, 88–92. DOI: 10.1111/j.1151-916.1958.tb15448.x.
  • 49. Isupov, V.P., Bulina, N.V. & Borodulina, I.A. (2017). Effect of Water Vapor Pressure on the Phase Composition of Lithium Monoaluminates Formed in the Interaction of Aluminum Hydroxide and Lithium Carbonate. Zhurnal Prikladnoi Khimii, 90, 986−991. DOI: 10.1134/S1070427217080043.
  • 50. Tarte, P. (1967). Infra-red spectra of inorganic aluminates and characteristic vibrational frequencies of AlO4 tetrahedra and AlO6 octahedra. Spectrochim. Acta 23A, 2127–2143. DOI: 10.1016/0584-8539(67)80100-4.
  • 51. Braun, P.A. (1952). Superstructure in Spinels. Nature 170, 1123. DOI: 10.1038/1701123a0.
  • 52. Datta, R.K. & Roy, R. (1963). Phase Transitions in LiAl5O8. J. Am. Ceram. Soc. 46, 8, 388–390. DOI: 10.1111/j.1151-2916.1963.tb11757.x.
  • 53. La Ginestra, A., Lo Jacono, M. & Porta, P. (1972). The preparation, characterization, and thermal behaviour of some lithium aluminum oxides: Li3AlO3 and Li5AlO4. J. Thermal Anal. 4, 5–17. DOI: 10.1007/bf02100945.
  • 54. Kroger, C. & Fingas, E. (1935). Über die Systeme Alkalioxyd–CaO–Al2O3–SiO2–CO2. IV. Die CO2-Drucke des kieselsäurereicheren Teils des Systems Li2O–SiO2–CO2 und der Einwirkung von Al2O3 auf Li2CO3. Z anorg. Allg. Chem. 224, 289–304. DOI: 10.1002/zaac.19352240309.
  • 55. Fedorov, T.F. & Shamari, F.I. (1960). Prim. Vak. V. Met., Akad. Nauk SSSR, Inst. Met. A.A. Baikova, 137–142.
  • 56. Walczak, J., Kurzawa, M. & Tabero, P. (1987). V9Mo6O40 and phase equilibria in the system V9Mo6O40–Fe2O3. Thermochim. Acta 118, 1–7. DOI: 10.1016/0040-6031(87)80065-5.
  • 57. Tabero, P. (2010). Formation and properties of the new Al8V10W16O85 and Fe8-xAlxV10W16O85 phases with the M-Nb2O5 structure. J. Therm. Anal. Calorim. 101, 560–566. DOI: 10.1007/s10973-010-0848-z.
  • 58. Tabero, P., Frackowiak, A., Filipek, E., Dąbrowska, G., Homonnay, Z. & Szilágyi, P.Á. (2018). Synthesis, thermal stability and unknown properties of Fe1-xAlxVO4 solid solution. Ceram. Int. 44, 17759–17766. DOI: 10.1016/j.ceramint.2018.06.243.
  • 59. Filipek, E., Dabrowska, G. & Piz, M. (2010). Synthesis and characterization of new compound in the V-Fe-Sb-O system. J. Alloys Compd. 490, 93–97. DOI: 10.1016/j.jallcom.2009.10.123.
  • 60. Levin, I. & Brandon, D. (1998). Metastable Alumina Polymorphs: Crystal Structures and Transition Sequences. J. Am. Ceram. Soc. 81, 1995–2012. DOI: 10.1111/j.1151-2916.1998.tb02581.x.
  • 61. Krokodis, X., Raybaud, P., Gobichon, A.E., Rebours, B., Euzen, P. & Toulhoat, H. (2001). Theoretical Study of the Dehydration Process of Boehmite to γ-Alumina. J. Phys. Chem. B 105, 5121–5130. DOI: 10.1021/jp0038310.
  • 62. Kim, J., Kang, H., Hwang, K. & Yoon, S. (2019). Thermal Decomposition Study on Li2O2 for Li2NiO2 Synthesis as a Sacrificing Positive Additive of Lithium-Ion Batteries. Molecules 24, 4624–4632. DOI: 10.3390/molecules24244624.
  • 63. Tovar, T.M. & Le, Van, M.D. (2017). Supported lithium hydroxide for carbon dioxide adsorption in water-saturated environments. Adsorption 23, 51–56. DOI: 10.1007/s10450-016-9817-6.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13b1176e-8bfa-496b-a51b-f0bd9efd1f12
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.