Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The publication addresses the dynamic state challenges encountered during development of a dual active bridge (DAB) converter within DC microgrid systems. The conventional startup method is identified as instigating a cascade of unfavorable outcomes, encompassing elevated starting current, transformer current asymmetry, DC voltage distortions, EMI and heightened thermal stress on semiconductor components. Additionally, it necessitates precise calibration of magnetic components and diodes. A proposed remedy to these issues is introduced, involving a control method based on an additional phase shift to modulate the current of the primary H bridge. This novel control methodology is posited as a means to mitigate the aforementioned undesirable effects associated with traditional converter initiation techniques. The research also delves into considerations of a proper design procedure for the converter. Emphasis is placed on integrating the novel control methodology into the design framework in order to effectively address challenges arising during transient states. Validation of the proposed solution is substantiated through a series of laboratory tests, the results of which are comprehensively presented in the article. These tests affirm the efficiency of the system when incorporating the novel control methodology, thereby substantiating its practical utility in mitigating the issues identified during the initiation phase of the DAB converter in DC microgrid systems.
Rocznik
Tom
Strony
art. no. e150328
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
- Warsaw University of Technology, Institute of Control and Industrial Electronics, Warsaw, Poland
autor
- Gdansk University of Technology, Department of Power Electronics and Electrical Machines
Bibliografia
- [1] D. Saha et al., “Space Microgrids for Future Manned Lunar Bases: A Review,” IEEE Open Access J. Power Energy, vol. 8, pp. 570-583, 2021, doi: 10.1109/OAJPE.2021.3116674.
- [2] S. Piasecki, J. Zaleski, M. Jasinski, S. Bachman, and M. Turzyński, “Analysis of AC/DC/DC Converter Modules for Direct Current Fast-Charging Applications,” Energies, vol. 14, p. 6369, 2021, doi: 10.3390/en14196369.
- [3] M. Morawiec and A. Lewicki, “Power electronic transformer based on cascaded H-bridge converter,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, pp. 675–683, 2017.
- [4] L. Anbazhagan, J. Ramiah, V. Krishnaswamy, and D.N. Jayachandra, “A comprehensive Review on Bidirectional Traction Converter for Electric Vehicles,” Int. J. Electron. Telecommun., vol. 65, no. 4, pp. 635–649, 2019, doi: I10.24425/ijet.2019.129823.
- [5] S. Jalbrzykowski and T. Citko, “A bidirectional DC-DC converter for renewable energy systems,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 57, no. 4, pp. 363–368, 2009, doi: 10.2478/v10175-010-0139-7.
- [6] N. Hou, Y.W. Li, and L. Ding, “Communicationless Power Management Strategy for the Multiple DAB-Based Energy Storage System in Islanded DC Microgrid,” 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, USA, 2020, pp. 4656–4661, doi: 10.1109/ECCE44975.2020.9236420.
- [7] M. Turzyński et al., “Analytical Estimation of Power Losses in a Dual Active Bridge Converter Controlled with a Single-Phase Shift Switching Scheme,” Energies, vol. 15, no. 21, p. 8262, 2022, doi: 10.3390/en15218262.
- [8] R. Barlik, P. Grzejszczak, and M. Koszel, “Mathematical and simulation modeling of dual active bridge,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 5, pp. e142653, 2022, doi: 10.24425/bpasts.2022.142653.
- [9] A. Tong, L. Hang, G. Li, and J. Huang, “Nonlinear characteristics of DAB converter and linearized control method,” 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, USA, 2018, pp. 331–337, doi: 10.1109/APEC.2018.8341031.
- [10] J.-I. Itoh, K. Kawauchi, and H. Watanabe, “Non-linear Dead-time Error Compensation Method of Dual Active Bridge DC-DC Converter for Variable DC-bus Voltage,” 2018 International Conference on Smart Grid (icSmartGrid), Nagasaki, Japan, 2018, pp. 208–213, doi: 10.1109/ISGWCP.2018.8634560.
- [11] S. Baba, S. Bachman, M. Jasinski, and M. Zelechowski, “WBG-Based PEBB Module for High Reliability Power Converters,” IEEE Access, vol. 9, pp. 86488–86499, 2021, doi: 10.1109/ACCESS.2021.3089045.
- [12] Z. Zhu, Y. Zheng, Y. Fang, and P. Xu, “Analysis of the startup method for building up DC voltage via body diode rectifying in Dual Active Bridge converter,” 2014 International Power Electronics and Application Conference and Exposition, Shanghai, China, 2014, pp. 1407–1410, doi: 10.1109/PEAC.2014.7038071.
- [13] P. Kundur et al., “Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions,” IEEE Trans. Power Syst., vol. 19, no. 3, pp. 1387–1401, Aug. 2004, doi: 10.1109/TPWRS.2004.825981.
- [14] S. Dey, S.S. Chakraborty, S. Singh, and K. Hatua, “Design of High Frequency Transformer for a Dual Active Bridge (DAB) Converter,” 2022 IEEE Global Conference on Computing, Power and Communication Technologies (GlobConPT), New Delhi, India, 2022, pp. 16, doi: 10.1109/GlobConPT57482.2022.9938249.
- [15] Z. Zhu, J. Liu, F. Xiao, P. Chen, and Q. Ren, “Start-up Procedure and Soft-starting Strategy for Dual Active Bridge Converter,” 2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), Nanjing, China, 2020, pp. 566–571, doi: 10.1109/IPEMC-ECCEAsia48364.2020.9367737.
- [16] Q. Zeng, Y. Wei, B. Yang, J. Xu, and D. Zhao, “Research on DAB Triple Phase Shift Control Strategy Based on Current Stress and Soft Switch Dual Objective Optimization,” 2021 11th International Conference on Power and Energy Systems (ICPES), Shanghai, China, 2021, pp. 36–41, doi: 10.1109/ICPES53652.2021.9683807.
- [17] R. Barlik, M. Nowak, P. Grzejszczak, and M. Zdanowski, “Analytical description of power losses in a transformer operating in the dual active bridge converter,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 64, no. 3, pp. 561–574, 2016, doi: 10.1515/bpasts-2016-0063.
- [18] J. Hu, S. Cui, and R.W. De Doncker, “Closed-Loop Black Start-Up of Dual-Active-Bridge Converter With Boosted Dynamics and Soft-Switching Operation,” IEEE Trans. Power Electron., vol. 36, no. 10, pp. 11009–11013, Oct. 2021, doi: 10.1109/TPEL.2021.3071578.
- [19] D.-D. Nguyen and K. Yukita, “A soft-starting method for Dual Active Bridge Converters,” 2019 IEEE Third International Conference on DC Microgrids (ICDCM), Matsue, Japan, 2019, pp. 1–6, doi: 10.1109/ICDCM45535.2019.9232801.
- [20] S. Bachman, M. Turzński, and M. Jasiński, “Modern control strategy of bidirectional DAB converter with consideration of control nonlinearity”, SENE 2023, Łódź, Poland, 2023.
- [21] X. Liu, M. Han, D. Liu, Z. Li, Z. Dong, and Z. Zhang, “A New Start-up Method for Dual Active Bridge Power Converters,” 2022 IEEE 5th International Electrical and Energy Conference (CIEEC), Nangjing, China, 2022, pp. 4266—4270, doi: 10.1109/CIEEC54735.2022.9846100.
- [22] T.-W. Huang, S.-H. Kuo, C.-C. Wang, and H.-J. Chiu, “High Power Dual Active Bridge Converter in Wide Voltage Range Application,” 2021 International Conference on Fuzzy Theory and Its Applications (iFUZZY), Taitung, Taiwan, 2021, pp. 1–5, doi: 10.1109/iFUZZY53132.2021.9605081.
- [23] A.K. Jain and R. Ayyanar, “PWM control of dual active bridge: comprehensive analysis and experimental verification,” 2008 34th Annual Conference of IEEE Industrial Electronics, Orlando, USA, 2008, pp. 909–915, doi: 10.1109/IECON.2008.4758074.
- [24] Y. Eto, Y. Noge, and M. Shoyama, “A Dynamic Characteristic of Bi-directional Dual Active Bridge Converter with Power-Feedback Control,” 2021 IEEE 12th Energy Conversion Congress & Exposition – Asia (ECCE-Asia), Singapore, 2021, pp. 1940–1945, doi: 10.1109/ECCE-Asia49820.2021.9479008.
- [25] R. Barlik, M. Nowak, and P. Grzejszczak, “Power transfer analysis in a single phase dual active bridge,” Bull. Polish Acad. Sci. Tech. Sci., vol. 61, no. 4, pp. 809–828, 2013, doi: 10.2478/bpasts-2013-0088.
- [26] K. Wolski, P. Grzejszczak, M. Szymczak, and R. Barlik, “Closed-Form Formulas for Automated Design of SiC-Based Phase-Shifted Full Bridge Converters in Charger Applications,” Energies, vol. 14, no. 17, p. 5380, 2021, doi: 10.3390/en14175380.
- [27] S. Dutta and S. Bhattacharya, “A method to measure the DC bias in high frequency isolation transformer of the dual active bridge DC to DC converter and its removal using current injection and PWM switching,” 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, USA, 2014, pp. 1134–1139, doi: 10.1109/ECCE.2014.6953527.
- [28] M. Gierczynski, L.M. Grzesiak, and A. Kaszewski, “Cascaded Voltage and Current Control for a Dual Active Bridge Converter with Current Filters,” Energies, vol. 14, no. 19, p. 6214, 2021, doi: 10.3390/en14196214.
- [29] C. Du, W. Guo, S. Guo, W. Cai, and Q. Shi, “Transient Current Optimal Control of the Hybrid Three Level Dual Active Bridge Converters Based on Triple-Phase-Shifting Control,” 2021 IEEE 12th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Chicago, USA, 2021, pp. 1–8, doi: 10.1109/PEDG51384.2021.9494170.
- [30] J. Xu et al., “Fast Transient Current Control for Dual-Active-Bridge DC-DC Converters with Triple-Phase-Shift,” 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, USA, 2019, pp. 2197–2201, doi: 10.1109/APEC.2019.8722187.
- [31] G. Yang, D. Zhang, X. Yang, and M. Zhang, “Transient DC bias suppression and general dynamic modulation for dual active bridge converter,” 2022 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Guangzhou, China, 2022, p. 527532, doi: 10.1109/PEAC56338.2022.995912.
- [32] L. Jiang, G. Li, M. Yang, W. Sima, X. Wang, and S. Ding, “Research on Electromagnetic Transient Model and Control Strategy of Dual Active Bridge Considering Transformer Core Nonlinearity,” 2022 IEEE International Conference on High Voltage Engineering and Applications (ICHVE), Chongqing, China, 2022, pp. 1–3, doi: 10.1109/ICHVE53725.2022.9961417.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13b0b2af-d93c-45ce-8a71-a510d6a35ed0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.