PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Regionalisation of watersheds with respect to low flow

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to compare two grouping methods for regionalisation of watersheds, which are similar in respect of low flow and chosen catchments parameters (physiographic and meteorological). In the study, a residual pattern approach and cluster analysis, i.e. Ward’s method, were used. The analysis was conducted for specific low flow discharge q95 (dm3∙s-1∙km-2). In the analysis, 50 catchments, located in the area of the upper and central Vistula River basin, were taken. Daily flows used in the study were monitored from 1976 to 2016. Based on the residual pattern approach (RPA) method, the analysed catchments were classified into two groups, while using the cluster analysis method (Ward’s method) - into five. The predictive performance of the complete regional regression model checked by cross-validation R2cv was 47% and RMSEcv= 0.69 dm3∙s-1∙km-2. The cross validation procedure for the cluster analysis gives a predictive performance equal to 33% and RMSEcv= 0.81 dm3∙s-1∙km-2. Comparing both methods, based on the cross-validated coefficient of determination (R2cv), it was found that the residual pattern approach had a better fit between predicted and observed values. The analysis also showed, that in case of both methods, an overestimation of specific low flow discharge q95 was observed. For the cross-validation method and the RPA method, the PBIAS was -10%. A slightly higher value was obtained for the cross-validation method and models obtained using cluster analysis for which the PBIAS was -13.8%.
Wydawca
Rocznik
Tom
Strony
47--55
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
  • University of Agriculture in Krakow, Faculty of Environmental Engineering and Land Surveying, al. Mickiewicza 21, 31-120 Kraków, Poland
  • University of Agriculture in Krakow, Faculty of Environmental Engineering and Land Surveying, al. Mickiewicza 21, 31-120 Kraków, Poland
Bibliografia
  • ARSENAULT R., BRETON-DUFOUR M., POULIN A., DALLAIRE G., ROMERO-LOPEZ R. 2019. Streamflow prediction in ungauged basins: analysis of regionalization methods in a hydrologically heterogeneous region of Mexico. Hydrological Sciences Journal. Vol. 64 (11) p. 1297–1311. DOI 10.1080/02626667.2019.1639716.
  • CEDRO A., WALCZAKIEWICZ S. 2017. Podstawy meteorologii i klimatologii. W: Odnawialne źródła energii w Polsce ze szczególnym uwzględnieniem województwa zachodniopomorskiego [Basics of meteorology and climatology. In: Renewable energy sources in Poland with particular reference to the West Pomeranian Voivodeship]. Eds. M. Świątek, A. Cedro. Szczecin. Wydaw. ZAPOL Sobczyk p. 29–44.
  • CLC undated. CORINE Land Cover – CLC 2012 [online]. [Access 10.01.2022]. Available at: https://clc.gios.gov.pl/index.php/clc-2012/metadane
  • CUPAK A. 2020. Regionalization methods for low flow estimation in ungauged catchments – A review. Acta Scientiarum Polonorum. Formatio Circumiectus. Vol. 19(1) p. 21–35. DOI 10.15576/ASP.FC/2020.19.1.21.
  • CUPAK A., WAŁĘGA A., MICHALEC B. 2017. Cluster analysis in determination of hydrologically homogeneous regions with low flow. Acta Scientiarum Polonorum. Formatio Circumiectus. Vol. 16(1) p. 53–63.
  • DEMUTH S., YOUNG A.E. 2004. Regionalisation procedures. In: Hydrological drought: Processes and estimation methods for stream-flow and groundwater. Eds. L.M. Tallaksen, H.A.J. van Lanen. Developments in Water Science. Vol. 48. Amsterdam. Elsevier p. 307–344.
  • DOBRZAŃSKI B., WITEK T., KOWALIŃSKI S., KRÓLIKOWSKI L., KUŹNICKI F., SIUTA J., ..., ZAWADZKI S. 1972. Polska mapa gleb. Warszawa. Wydaw. Geologiczne.
  • DOS PEREIRA D.R., MARTINEZ M.A., DA SILVA D.D., PRUSKI F.F. 2016. Hydrological simulation in a basin of typical tropical climate and soil using the SWAT Model. Part II: Simulation of hydrological variables and soil use scenarios. Journal of Hydrology: Regional Studies. Vol. 5 p. 149–163. DOI 10.1016/j.ejrh.2015.11.008.
  • FANG G.H., YANG J., CHEN Y.N., ZAMMIT C. 2014. Comparing bias correction methods in downscaling meteorological variables for hydrologic impact study in an arid area in China. Hydrology and Earth System Sciences Discussions. Vol. 11 p. 12659–12696. DOI 10.5194/hessd-11-12659-2014.
  • GUSTARD A., IRVING K.M. 1994. Classification of the low flow response of European soils. FRIEND: Flow Regimes from International Experimental and Network Data. IAHS Publication. No. 221 p. 113–117.
  • GUTRY-KORYCKA M., J OKIEL P. 2017. Projekcje ewolucji zasobów wodnych Polski w wyniku zmian klimatu i wzrastającej antropopresji. W: Hydrologia Polski [Projections of the evolution of Poland’s water resources as a result of climate change and increasing anthropopression. In: Hydrology of Poland]. Eds. P. Jokiel, W. Marszelewski, J. Pociask-Karteczka. Warszawa. Wydaw. Nauk. PWN p. 301–305.
  • IMGW 2021. Klimat Polski 2020. Raport [Climate of Poland 2020. Report]. Warszawa. Instytut Meteorologii i Gospodarki Wodnej Państwowy Instytut Badawczy pp. 24.
  • JURIK L. 2020. Sucho v krajine a vodné stavby [Drought in the landscape and water structures]. Vodohospodàrsky spravodajca. No. 7–8 p. 5–7.
  • JURIK L., KALETOVÁ T., HALAJ P. 2016. Water management for sustainable growth strategies. Visegrad Journal on Bioeconomy and Sustainable Development. Vol. 1 p. 31–35. DOI 10.1515/vjbsd-2016-0006.
  • KONDRACKI J. 2000. Geografia regionalna Polski [Regional geography of Poland]. Warszawa. Wydaw. Nauk. PWN. ISBN 83-01-13050-4 pp. 440.
  • KRAJEWSKI A., SIKORSKA-SENONER A.E., HEJDUK L., BANASIK K. 2021. An attempt to decompose the impact of land use and climate change on annual runoff in a small agricultural catchment. Water Resources Management. Vol. 35 p. 881–896. DOI 10.1007/s11269-020-02752-9.
  • KRAUSE P., BOYLE D.P., BÄSE F. 2005. Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences. Vol. 5 p. 89–97. DOI 10.5194/adgeo-5-89-2005.
  • LAAHA G., BLÖSCHL G. 2006. A comparison of low flow regionalization methods-catchment grouping. Journal of Hydrology. Vol. 323 p. 193–214. DOI 10.1016/j.jhydrol.2005.09.001.
  • LIN G.F., WANG C.M. 2006. Performing cluster analysis and discrimination analysis of hydrological factors in one step. Advances in Water Resources. Vol. 29 p. 1573–1585. DOI 10.1016/j.advwatres.2005.11.008.
  • MANDAL U., CUNNANE C. 2009. Low-flow prediction for ungauged River catchments in Ireland [online]. Irish National Hydrology Seminar. [Access 10.12.2021]. Available at: https://hydrologyire-land.ie/wp-content/uploads/2016/12/4-Low-flow-prediction-for-ungauged-river-catchments-in-Ireland.pdf
  • MORIASI D.N., ARNOLD J.G., VAN LIEW M.W., BINGNER R.L., HARMEL R.D., VEITH T.L. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE. Vol. 50(3) p. 885–900. DOI 10.13031/2013.23153.
  • NASH J.E., SUTCLIFFE J. 1970. River flow forecasting through conceptual models part I – A discussion of principles. Journal of. Hydrology. Vol. 10 p. 282–290. DOI 10.1016/0022-1694(70)90255-6.
  • PATEL J.A. 2007. Evaluation of low flow estimation techniques for ungauged catchments. Water and Environment Journal. Vol. 21 p. 41–46. DOI 10.1111/j.1747-6593.2006.00044.x.
  • RAO A.R., SRINIVAS V.V. 2006. Regionalization of watersheds by hybryd cluster analysis. Journal of Hydrology. Vol. 31(1–4) p. 57–79. DOI 10.1016/j.jhydrol.2005.06.003.
  • RIGGS H.C. 1973. Regional analysis of streamflow characteristics. Techniques of Water Resources Investigations of the United States Geological Survey. Book 4. Chapt. B3. Washington DC. USGS pp. 15.
  • SMAKHTIN V.U. 2001. Low flow hydrology: A review. Journal of Hydrology. Vol. 240 p. 147–186. DOI 10.1016/S0022-1694(00)00340-1.
  • Statology 2021. What is Mallows’ Cp? (defintion & example) [online]. Statology. Statistics. Simpilified. [Access 10.01.2022]. Available at: https://www.statology.org/mallows-cp/
  • ŠTEVKOVÁ A., SABO M., KOHNOVÁ S. 2012. Pooling of low flow regimes using cluster and principal component analysis. Slovak Journal of Civil Engineering. Vol. 20(2) p. 19–27.
  • SUCHOŻEBRSKI J. 2018. Zasoby wodne Polski. W: Zarządzanie zasobami wodnymi w Polsce [Water resources of Poland. In: Water resources management in Poland]. Discussion Paper. Global Compact Network Poland p. 92–96.
  • TEGEGNE G., PARK D.K., KIM Y. 2017. Comparison of hydrological models for the assessment of water resources in a data-scarce region, the Upper Blue Nile River Basin. Journal of Hydrology: Regional Studies. Vol. 14 p. 49–66. DOI 10.1016/j.ejrh.2017.10.002.
  • TRAMBLAY Y., RUTKOWSKA A., SAUQUET E., SEFTON C., LAAHA G., OSUCH M., ..., DATRY T. 2020. Trends in flow intermittence for European rivers. Hydrological Sciences Journal. Vol. 66(1) p. 37–49. DOI 10.1080/02626667.2020.1849708.
  • VAN LIEW M.W., VEITH T.L., BOSCH D.D., ARNOLD J.G. 2007. Suitability of SWAT for the conservation effects assessment project: A comparison on USDA-ARS experimental watersheds. Journal of Hydrologic Engineering. Vol. 12(2) p. 173–189. DOI 10.1061/(ASCE)1084-0699(2007)12:2(173).
  • VEZZA P., COMPOGLIO C., ROSSO M., VIGLIONE A. 2010. Low flows regionalization in North-Western Italy. Water Resources Management. Vol. 24 p. 4049–4074. DOI 10.1007/s11269-010-9647-3.
  • VOICU R., RADECKI-PAWLIK A., TYMIŃSKI T., MOKWA M., SOTIR R., VOICU L. 2020. A potential engineering solution to facilitate upstream movement of fish in mountain rivers with weirs: Southern Carpathians, the Azuga River. Journal of Mountain Science. Vol. 17 p. 501–515. DOI 10.1007/s11629-019-5572-y.
  • WAŁĘGA A., MŁYŃSKI D., KOKOSZKA R. 2014. Weryfikacja wybranych metod empirycznych do obliczania przepływów minimalnych i średnich w zlewniach dorzecza Dunajca [Verification of selected empirical methods for the calculation of minimum and mean flows in catchments of the Dunajec basin]. Infrastruktura i Ekologia Terenów Wiejskich. Vol. II/3 p. 825–837.
  • WARD Jr J.H. 1963. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association. Vol. 58 p. 236–244.
  • ZIERNICKA-WOJTASZEK A., KACZOR G. 2013. The intensity and amount of precipitation in both the city of Krakow and the neighbouring areas during the May–June 2010 flood. Acta Scientiarum Polonorum. Formatio Circumiectus. Vol. 12(2) p. 143–151.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13b05d05-5374-42bf-8287-682eda5da370
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.