PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Low-carbon cast microalloyed steel intercritically heat-treated at different temperatures: microstructure and mechanical properties

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, dual-phase (DP, ferrite + martensite) microstructures were obtained by performing intercritical heat treatments (IHT) at 750 and 800°C followed by quenching. Decreasing the IHT temperature from 800 to 750°C leads to: (i) a decrease in the volume fraction of austenite (martensite after quenching) from 0.68 to 0.36; (ii) ~ 100°C decrease in martensite start temperature (Ms), mainly due to the higher carbon content of austenite and its smaller grains at 750°C; (iii) a reduction in the block size of martensite from 1.9 to 1.2 μm as measured by EBSD. Having a higher carbon content and a finer block size, the localized microhardness of martensite islands increases from 380 HV (800°C) to 504 HV (750°C). Moreover, despite the different volume fractions of martensite obtained in DP microstructures, the hardness of the steels remained unchanged by changing the IHT temperature (~ 234 to 238 HV). Applying lower IHT temperature (lower fraction of martensite), the impact energy even decreased from 12 to 9 J due to the brittleness of the martensite phase. The results of the tensile tests indicate that by increasing the IHT temperature, the yield and ultimate tensile strengths of the DP steel increase from 493 to 770 MPa, and from 908 to 1080 MPa, respectively, while the total elongation decreases from 9.8 to 4.5%. In contrast to the normalized sample, formation of martensite in the DP steels could eliminate the yield point phenomenon in the tensile curves, as it generates free dislocations in adjacent ferrite.
Rocznik
Strony
492--507
Opis fizyczny
Bibliogr. 44 poz., rys., wykr.
Twórcy
  • Materials Science Division, Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden
  • School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran
  • School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran
  • Materalia Research Group, National Center for Metallurgical Research (CENIM), Consejo Superior de Investigaciones Cientificas (CSIC), Avda Gregorio del Amo, 8, 28040 Madrid, Spain
  • Materials and Energy Research Center, 3177983634 Karaj, Iran
  • School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran
autor
  • Lortek, Arranomendia Kalea 4A, 20240 Ordizia, Gipozkoa, Spain
  • Materalia Research Group, National Center for Metallurgical Research (CENIM), Consejo Superior de Investigaciones Cientificas (CSIC), Avda Gregorio del Amo, 8, 28040 Madrid, Spain
Bibliografia
  • [1] Voigt RC. Analysis of intercritical heat treatment of cast steels. J Heat Treat. 1989;7(2):95–105. https:// doi. org/ 10. 1007/ bf028 33194.
  • [2] Radwanski K, Kuziak R, Rozmus R. Structure and mechanical properties of dual-phase steel following heat treatment simulations reproducing a continuous annealing line. Arch Civ Mech Eng. 2019;19(2):453–68. https:// doi. org/ 10. 1016/j. acme. 2018. 12. 006.
  • [3] Yang Y-G, Mi Z-L, Xu M, Xiu Q, Li J, Jiang H-T. Impact of intercritical annealing temperature and strain state on mechanical stability of retained austenite in medium Mn steel. Mater Sci Eng A. 2018;725:389–97. https:// doi. org/ 10. 1016/j. msea. 2018. 04. 041.
  • [4] Gorain N, Walunj MG, Soni MK, Kumar BR. Effect of continuous annealing process on various structure parameters of martensite of dual-phase steels. Arch Civ Mech Eng. 2020;20(1):29. https:// doi. org/ 10. 1007/ s43452- 020- 00022-4.
  • [5] Krauss G. Martensite in steel: strength and structure. Mater Sci Eng A. 1999;273–275(Supplement C):40–57. https:// doi. org/ 10. 1016/ S0921- 5093(99) 00288-9.
  • [6] Morito S, Tanaka H, Konishi R, Furuhara T, Maki T. The morphology and crystallography of lath martensite in Fe-C alloys. Acta Mater. 2003;51(6):1789–99. https:// doi. org/ 10. 1016/ S1359-6454(02) 00577-3.
  • [7] Krauss G. Steels: processing, structure, and performance. ASM International; 2005.
  • [8] de la Concepción VL, Lorusso HN, Svoboda HG. Effect of carbon content on microstructure and mechanical properties of dual phase steels. Proc Mater Sci. 2015;8:1047–56. https:// doi. org/ 10. 1016/j. mspro. 2015. 04. 167.
  • [9] Kalhor A, Soleimani M, Mirzadeh H, Uthaisangsuk V. A review of recent progress in mechanical and corrosion properties of dual phase steels. Arch Civ Mech Eng. 2020;20(3):85. https:// doi. org/ 10. 1007/ s43452- 020- 00088-0.
  • [10] Jahanara AH, Mazaheri Y, Sheikhi M. Correlation of ferrite and martensite micromechanical behavior with mechanical properties of ultrafine grained dual phase steels. Mater Sci Eng A. 2019;764:138206. https:// doi. org/ 10. 1016/j. msea. 2019. 138206.
  • [11] Ahmad E, Manzoor T, Ziai MMA, Hussain N. Effect of martensite morphology on tensile deformation of dual-phase steel. J Mater Eng Perform. 2012;21(3):382–7. https:// doi. org/ 10. 1007/ s11665- 011- 9934-z.
  • [12] Chen H-C, Cheng G-H. Effect of martensite strength on the tensile strength of dual phase steels. J Mater Sci. 1989;24(6):1991–4. https:// doi. org/ 10. 1007/ bf023 85411.
  • [13] Calcagnotto M, Ponge D, Demir E, Raabe D. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater Sci Eng A. 2010;527(10):2738–46. https:// doi. org/ 10. 1016/j. msea. 2010. 01. 004.
  • [14] Korzekwa DA, Matlock DK, Krauss G. Dislocation substructure as a function of strain in a dual-phase steel. Metall Mater Trans A. 1984;15(6):1221. https:// doi. org/ 10. 1007/ bf026 44716.
  • [15] Peng-Heng C, Preban AG. The effect of ferrite grain size and martensite volume fraction on the tensile properties of dual phase steel. Acta Metall. 1985;33(5):897–903. https:// doi. org/ 10. 1016/ 0001- 6160(85) 90114-2.
  • [16] Kamikawa N, Hirohashi M, Sato Y, Chandiran E, Miyamoto G, Furuhara T. Tensile behavior of ferrite-martensite dual phase steels with nano-precipitation of vanadium carbides. SIJ Int. 2015;55(8):1781–90. https:// doi. org/ 10. 2355/ isiji ntern ation al. ISIJI NT- 2015- 106.
  • [17] Davies RG. Inf luence of martensite composition and content on the properties of dual phase steels. Metall Trans A. 1978;9(5):671–9. https:// doi. org/ 10. 1007/ bf026 59924.
  • [18] Bag A, Ray KK, Dwarakadasa ES. Influence of martensite content and morphology on tensile and impact properties of high-martensite dual-phase steels. Metall Mater Trans A. 1999;30(5):1193–202. https:// doi. org/ 10. 1007/ s11661- 999- 0269-4.
  • [19] Džupon M, Parilák Ľ, Kollárová M, Sinaiová I. Dual phase ferrite-martensitic steel micro-alloyed with V-Nb. Metalurgija. 2007;46(1):15–20.
  • [20] Gao G, Gao B, Gui X, Hu J, He J, Tan Z, et al. Correlation between microstructure and yield strength of as-quenched and Q&P steels with different carbon content (0.06–0.42 wt% C). Mater Sci Eng A. 2019;753:1–10. https:// doi. org/ 10. 1016/j. msea. 2019. 03. 018.
  • [21] Torkamani H, Raygan S, Garcia Mateo C, Rassizadehghani J, Vivas J, Palizdar Y, et al. The influence of La and Ce addition on inclusion modification in cast niobium microalloyed steels. Metals. 2017;7(9):377–95. https:// doi. org/ 10. 3390/ met70 90377.
  • [22] Torkamani H, Raygan S, Garcia-Mateo C, Rassizadehghani J, Palizdar Y, San-Martin D. Evolution of pearlite microstructure in low-carbon cast microalloyed steel due to the addition of La and Ce. Metall Mater Trans A. 2018;49(10):4495–508. https:// doi. org/ 10. 1007/ s11661- 018- 4796-8.
  • [23] Torkamani H, Raygan S, Garcia Mateo C, Rassizadehghani J, Palizdar Y, San-Martin D. Contributions of rare earth element (La, Ce) addition to the impact toughness of low carbon cast niobium microalloyed steels. Met Mater Int. 2018. https:// doi. org/ 10. 1007/ s12540- 018- 0084-9.
  • [24] Torkamani H, Raygan S, Garcia Mateo C, Rassizadehghani J, Palizdar Y, San-Martin D. Tensile behavior of normalized low-carbon Nb-microalloyed steel in the presence of rare earth elements. Mater Sci Eng A. 2019;749:56–64. https:// doi. org/ 10. 1016/j. msea. 2019. 02. 005.
  • [25] Garcia C, Alvarez LF, Carsi M. Effects of heat-treatment parameters on non-equilibrium transformations and properties of X45Cr13 and X60Cr14MoV martensitic stainless steels. Weld Int. 1992;6(8):612–21. https:// doi. org/ 10. 1080/ 09507 11920 95482 51.
  • [26] Morito S, Yoshida H, Maki T, Huang X. Effect of block size on the strength of lath martensite in low-carbon steels. Mater Sci Eng A. 2006;438–440:237–40. https:// doi. org/ 10. 1016/j. msea. 2005. 12. 048.
  • [27] Shibata A, Nagoshi T, Sone M, Morito S, Higo Y. Evaluation of the block boundary and sub-block boundary strengths of ferrous lath martensite using a micro-bending test. Mater Sci Eng A. 2010;527(29):7538–44. https:// doi. org/ 10. 1016/j. msea. 2010. 08. 026.
  • [28] Vivas J, Capdevila C, Altstadt E, Houska M, Sabirov I, San-Mar-tín D. Microstructural degradation and creep fracture behavior of conventionally and thermomechanically treated 9% chromium heat resistant steel. Met Mater Int. 2019;25(2):343–52. https:// doi. org/ 10. 1007/ s12540- 018- 0192-6.
  • [29] Chen H, Yang R, Al-Abedy HK, Li H, Sun W, Jones IA. Characterisation of deformation process and fracture mechanisms of P91 steel at 600 °C in small punch tensile testing. Mater Charact. 2020;168:110514. https:// doi. org/ 10. 1016/j. match ar. 2020. 110514.
  • [30] San Martín D, Rivera-Díaz-del-Castillo PEJ, García-de-Andrés C. In situ study of austenite formation by dilatometry in a low-carbon microalloyed steel. Scr Mater. 2008;58(10):926–9. https:// doi. org/ 10. 1016/j. scrip tamat. 2008. 01. 019.
  • [31] San Martín D, de Cock T, García-Junceda A, Caballero FG, Capdevila C, de Andrés CG. Effect of heating rate on reaustenitisation of low-carbon niobium microalloyed steel. Mater Sci Technol. 2008;24(3):266–72. https:// doi. org/ 10. 1179/ 17432 8408X 265640.
  • [32] García-Junceda A, Capdevila C, Caballero FG, de Andrés CG. Dependence of martensite start temperature on fine austenite grain size. Scr Mater. 2008;58(2):134–7. https:// doi. org/ 10. 1016/j. scrip tamat. 2007. 09. 017.
  • [33] Galindo-Nava EI, Rivera-Díaz-del-Castillo PEJ. A model for the microstructure behaviour and strength evolution in lath martensite. Acta Mater. 2015;98:81–93. https:// doi. org/ 10. 1016/j. actam at. 2015. 07. 018.
  • [34] Huang F, Yang L, Rong Y, Guo Z. Effect of carbon content and microstructural refinement on the mechanical property of quenching-partitioning–tempering-treated steels. Mater Res Innov. 2015;19(4):54–8. https:// doi. org/ 10. 1179/ 14328 91715Z. 00000 00001 516.
  • [35] Simm T, Sun L, McAdam S, Hill P, Rawson M, Perkins K. The influence of lath, block and prior austenite grain (PAG) size on the tensile, creep and fatigue properties of novel maraging steel. Materials. 2017;10(7):730–45. https:// doi. org/ 10. 3390/ ma100 70730.
  • [36] Li S-C, Kang Y-L, Zhu G-M, Kuang S. Austenite formation during intercritical annealing in C-Mn cold-rolled dual phase steel. J Central S Univ. 2015;22(4):1203–11. https:// doi. org/ 10. 1007/ s11771- 015- 2634-3.
  • [37] Savran VI, Offerman SE, Sietsma J. Austenite nucleation and growth observed on the level of individual grains by three-dimensional X-ray diffraction microscopy. Metall Mater Trans A. 2010;41(3):583–91. https:// doi. org/ 10. 1007/ s11661- 009- 0142-5.
  • [38] Bhattacharyya A, Sakaki T, Weng GJ. The influence of martensite shape, concentration, and phase transformation strain on the deformation behavior of stable dual-phase steels. Metall Trans A. 1993;24(2):301–14. https:// doi. org/ 10. 1007/ bf026 57317.
  • [39] Bergström Y, Granbom Y, Sterkenburg D. A dislocation-based theory for the deformation hardening behavior of DP steels: impact of martensite content and ferrite grain size. J Metall. 2010. https:// doi. org/ 10. 1155/ 2010/ 647198.
  • [40] Sun S, Pugh M. Properties of thermomechanically processed dual-phase steels containing fibrous martensite. Mater Sci Eng A. 2002;335(1):298–308. https:// doi. org/ 10. 1016/ S0921- 5093(01) 01942-6.
  • [41] Mazinani M, Poole WJ. Effect of martensite plasticity on the deformation behavior of a low-carbon dual-phase steel. Metall Mater Trans A. 2007;38(2):328–39. https:// doi. org/ 10. 1007/ s11661- 006- 9023-3.
  • [42] Topçu O, Übeyli M, Demir T. On the hardenability of an intercritically heat treated microalloyed steel. Instrum Sci Technol. 2010;38(2):178–86. https:// doi. org/ 10. 1080/ 10739 14100 35945 52.
  • [43] Zhang C, Wang Q, Ren J, Li R, Wang M, Zhang F, et al. Effect of martensitic morphology on mechanical properties of an as-quenched and tempered 25CrMo48V steel. Mater Sci Eng A. 2012;534:339–46. https:// doi. org/ 10. 1016/j. msea. 2011. 11. 078.
  • [44] Totten GE, Narazaki M, Blackwood RR, Jarvis LM. Failures related to heat treating operations: failure analysis and prevention. In: Becker WT, Shipley RJ, editors. ASM International; 2002, vol 11, pp. 192–223. https:// doi. org/ 10. 31399/ asm. hb. v11. a0003 510.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13afc46c-51c7-483a-9209-65ee45f3f22f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.