PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Collagen and Keratin as a Components of Hydrogels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Smart hydrogels, or stimuli-responsive hydrogels, can and should play an important role as excellent drug carriers. These three-dimensional structure materials are composed of crosslinked hydrophilic polymer chains that are able to dramatically change their volume and other properties in response to environmental stimuli, such as pH, temperature and solvent changes. The main goal of individual research projects was the development of new hydrogels based on polypeptides. These hybrid materials are crosslinked hydrophilic polymers capable of absorbing large amounts of water, saline or physiological solutions. Superabsorbent hydrogels based on natural materials are non-toxic, biocompatible and biodegradable. Unfortunately, their mechanical properties in the swollen state are weak. In this article, we present a review of literature on the synthesis of smart hydrogels based on keratin or collagen with synthetic materials.
Słowa kluczowe
Rocznik
Strony
61--69
Opis fizyczny
Bibliogr. 77 poz., rys., tab.
Twórcy
  • Łukasiewicz Research Network-Łódź Institute of Technology
autor
  • Łukasiewicz Research Network-Łódź Institute of Technology
  • Łukasiewicz Research Network-Łódź Institute of Technology
  • Łukasiewicz Research Network-Łódź Institute of Technology
  • Łukasiewicz Research Network-Łódź Institute of Technology
Bibliografia
  • 1. Wichterle O, Lim D. Hydrophilic gels for biological use. Nature. 1960;185:117–118. DOI: 10.1038/185117a0.
  • 2. Patel A, Mequanint K. Hydrogel Biomaterials, Biomedical Engineering - Frontiers and Challenges, Reza Fazel-Rezai, IntechOpen, DOI: 10.5772/24856. Available from: https://www.intechopen.com/books/biomedical-engineeringfrontiers-and-challenges/hydrogelbiomaterials.
  • 3. Ganji F, Vasheghani FS, Vasheghani FE. Theoretical description of hydrogel swelling: a review. Iranian Polymer Journal. 2010;19(5):375-398. DOI: 10.1.1.865.2003.
  • 4. Enas MA. Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research.2015;6(2):105-121. DOI: 10.1016/j.jare.2013.07.006.
  • 5. Ciolacu DE. Structure-Property Relationships in Cellulose-Based Hydrogels. In: Mondal MIH. editor. Cellulose-Based Superabsorbent Hydrogels. Springer, 2019; p. 65-95. DOI: 10.1007/978-3-319-77830-3.
  • 6. Kaczmarek B, Nadolna K, Owczarek A. The physical and chemical properties of hydrogels based on natural polymers. In: Chen Y. editor. Hydrogels Based on Natural Polymers. Elsevier, 2020; p.151–172. DOI: 10.1016/B978-0-12-816421-1.00006-9.
  • 7. Oyen ML. Mechanical characterization of hydrogel materials. International Materials Reviews. 2014;59(1):44-59. DOI: 10.1179/1743280413Y.0000000022
  • 8. Kopecek J. Hydrogel biomaterials: A smart future? Biomaterials. 2007;28(34)5185-5192.
  • 9. Miri Klein M, Poverenov E. Natural biopolymer-based hydrogels for use in food and agriculture. Journal of the Science of Food and Agriculture. 2020;100(6):2337-2347. DOI: 10.1002/jsfa.10274.
  • 10. Behera S, Mahanwar PA. Superabsorbent polymers in agriculture and other applications: a review. Polymer-Plastics Technology and Materials. 2020;59(4):341-356. DOI: 10.1080/25740881.2019.1647239
  • 11. Singhal R, Gupta K. A Review: Tailormade Hydrogel Structures (Classifications and Synthesis Parameters). Polymer-Plastics Technology and Engineering. 2016;55(110):54-70. DOI: 10.1080/03602559.2015.1050520.
  • 12. Saini RK, Bajpai J, Bajpai AK. Synthesis of Poly(2-Hydroxyethyl Methacrylate) (PHEMA)-Based Superparamagnetic Nanoparticles for Biomedical and Pharmaceutical Applications. Methods in Molecular Biology. 2020;2118:165-174. DOI: 10.1007/978-1-0716-0319-2_13.
  • 13. Mackova H, Plichta Z, Hlidkova H, et al. Reductively Degradable Poly(2-hydroxyethyl methacrylate) Hydrogels with Oriented Porosity for Tissue Engineering Applications. ACS Applied Materials & Interfaces. 2017; 9(12):10544–10553. DOI: 10.1021/acsami.7b01513.
  • 14. Hassan CM, Peppas NA. Structure and Applications of Poly(vinyl alcohol) Hydrogels Produced by Conventional Crosslinking or by Freezing/Thawing Methods. In: Abe A, Albertsson AC, Cantow HJ, et al. editors. Biopolymers PVA Hydrogels, Anionic Polymerisation Nanocomposites. Advances in Polymer Science. Berlin, Springer, 2000; p. 37-65. DOI: 10.1007/3-540-46414-X_2.
  • 15. Yang TH. Recent Applications of Polyacrylamide as Biomaterials. Recent Patents an material Science. 2008;1(1):29-40. DOI: 10.2174/1874464810801010029.
  • 16. Lee S, Tong X, Yang F. Effects of the poly(ethylene glycol) hydrogel crosslinking mechanism on protein release. Biomaterials Science Journal. 2016;4:405-411. DOI: 10.1039/C5BM00256G.
  • 17. Bahram M, Mohseni N, Moghtader M. An Introduction to Hydrogels and Some Recent Applications. In: Majee SB. editor. Emerging Concepts in Analysis and Applications of Hydrogels, IntechOpen, 2016. Available from: https://www.intechopen.com/books/emergingconcepts-in-analysis-and-applications-ofhydrogels/an-introduction-to-hydrogelsand-some-recent-applications. DOI: 10.5772/64301
  • 18. HeW, Ma Y, Gao X, Wang X, Dai X, Song J. Application of Poly(Nisopropylacrylamide) As Thermosensitive Smart Materials. Journal of Physic: Conference Series. 2020;1676:012063. DOI: 10.1088/1742-6596/1676/1/012063.
  • 19. Dashtebayaz MSS, Nourbakhsh MS. Interpenetrating networks hydrogels based on hyaluronic acid for drug delivery and tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials. 2019;68(8):442-451. DOI: 10.1080/00914037.2018.1455680.
  • 20. Varghese SA, Rangappa SM, Siengchin S, Parameswaranpillai J. Chapter 2 – Natural polymers and the hydrogels prepared from them, In: Chen Y. editor. Hydrogels Based on Natural Polymers, Elsevier, 2020; p.17-47. DOI: 10.1016/B978-0-12-816421-1.00002-1.
  • 21. Xu X, Jha AK, Harrington DA, Farach-Carson MC, et al. Hyaluronic acid-based hydrogels: from a natural polysaccharide to complex networks. Soft Matter. 2012;8:3280-3294. DOI: 10.22203/eCM.v037a12.
  • 22. Suekama TC, Hu J, Kurokawa T, et al. Double-Network Strategy Improves Fracture Properties of Chondroitin Sulfate Networks. ACS Macro Letters. 2013;2(2):137–140. DOI: 10.1021/mz3006318.
  • 23. S.K.Samal, M.Dash, P.Dubruel, S.Van Vlierberghe. 8 - Smart polymer hydrogels: properties, synthesis and applications. In: Aguilar MR, Román JS. editors. Smart Polymers and their Applications, Woodhead Publishing, 2014; p. 237-270. DOI: 10.1533/9780857097026.1.237.
  • 24. Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Advanced Drug Delivery Reviews. 2008;60(15):1638-1649. DOI: 10.1016/j. addr.2008.08.002.
  • 25. Sudre G, Tran Y, Creton C, Hourdet D. pH/Temperature control of interpolymer complexation between poly(acrylic acid) and weak polybases in aqueous solutions, Polymer. 2012;2:379-385. DOI: 10.1016/j.polymer.2011.11.055.
  • 26. Zhang S, Chen C, Li Z. Effects of molecular weight on thermal responsive property of pegylated poly-l-glutamates. Chinese Journal of Polymer Science. 2013;2:201–210. DOI: 10.1007/s10118-013-1218-7.
  • 27. Yoshida T, Lai TC, Kwon GS. pHand ion-sensitive polymers for drug delivery. Expert Opinion on Drug Delivery. 2013;10(11):1497-1513. DOI: 10.1517/17425247.2013.821978.
  • 28. Ramos MLP, González JA, Fabian L et al. Sustainable and smart keratin hydrogel with pH-sensitive swelling and enhanced mechanical properties. Materials Science and Engineering: C. 2017;78:619-626. DOI: 10.1016/j.msec.2017.04.120.
  • 29. Zhang Y, Huang Y. Rational Design of Smart Hydrogels for Biomedical Applications. Front Chem. 2021;8:615665. DOI: 10.3389/fchem.2020.615665.
  • 30. Gomez-Florit M, Pardo A, Domingues RMA. et al. Natural-Based Hydrogels for Tissue Engineering Applications. Molecules. 2020;25(24):5858. DOI: 10.3390/molecules25245858.
  • 31. Lee Y, Song WJ, Sun JY. Hydrogel soft robotics. Materials Today Physics. 2020;15:100258. DOI: 10.1016/j.mtphys.2020.100258
  • 32. Park N, Kim J. Hydrogel-based artifial mascles: Overview and recent progress. Advanced Intelligent Systems. 2020;2(4):190013. DOI: 10.1002/aisy.201900135.
  • 33. Nikolov SV, Yeh PD. Alexeev A. Self-Propelled Microswimmer Actuated by Stimuli-Sensitive Bilayered Hydrogel. ACS Macro Letters. 2015;4(1): 84–88. DOI: 10.1021/mz5007014
  • 34. Niculescu M, Epure D, Lason-Rydel M, Gaidau C, Gidea M, Enascuta C, Multifunctional biocomposites based on collagen and keratin with properties for agriculture and industry applications. Journal of Biotechnology. 2019; 305(15):S84-S85. DOI: 10.1016/j.jbiotec.2019.05.292.
  • 35. Skwarek M, Pipiak P, Sieczynska K. Effect of fish collagen and poly(hexamethylene biguanide) hydrochloride on the content of micro- and macroelements in maize plants. Przemysł Chemiczny. 2020; 99(10):1534-1537. DOI: 10.15199/62.2020.10.19.
  • 36. Lim YS, Ok YS, Hwang SY, Kwak JY, Yoon S. Marine Collagen as A Promising Biomaterial for Biomedical Applications. Marine Drugs. 2019; 7(8), 467. DOI: 10.3390/md17080467.
  • 37. Skwarek M, Wala M, Kołodziejek J, Sieczyńska K, Lasoń-Rydel M, Ławińska K, Obraniak A. Seed Coating with Biowaste Materials and Biocides—Environment-Friendly Biostimulation or Threat? Agronomy. 2021; 11:1034. DOI: 10.3390/agronomy11061034.
  • 38. Skwarek M, Nawrocka J, Lasoń-Rydel M, Ławińska K. Diversity of Plant Biostimulants in Plant Growth Promotion and Stress Protection in Crop and Fibrous Plants. FIBRES & TEXTILES in Eastern Europe. 2020; 28, 4(142): 34-41. DOI: 10.5604/01.3001.0014.0931.
  • 39. Ferraro V, Antona M, Santé-Lhoutellierb V. The “sisters” α-helices of collagen, elastin and keratin recovered from animal by-products: Functionality, bioactivity and trends of application. Trends in Food Science & Technology. 2016; 51:65-75. DOI: 10.1016/j.tifs.2016.03.006.
  • 40. Sharma S, Kumar A. Keratin as a Protein Biopolymer. Springer, 2019.
  • 41. Ławińska K, Lasoń-Rydel M, Gendaszewska D, Grzesiak , Sieczyńska K, Gaidau C, Equre DG, Obraniak A. Coating of Seeds with Collagen Hydrolysates from Leather Waste. Fibres &Textiles in Eastern Europe. 2019;4:59-64. DOI: 10.5604/01.3001.0013.1819.
  • 42. San Antonio JD, Jacenko O, Fertala A, Orgel J P R O. Collagen Structure-Function Mapping Informs Applications for Regenerative Medicine. Bioengineering. 2021;8:3. DOI: 10.3390/bioengineering8010003.
  • 43. Ida T, Kaku M, Kitami M, et al. Extracellular matrix with defective collagen crosslinking affects the differentiation of bone cells. PLoS ONE. 2018;13:1-18. DOI: 10.1371/journal.pone.0204306.
  • 44. Wang B, Yang W, McKittrick J, Meyers M A. Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Progres in Materials Science. 2016;76: 229-318. DOI: 10.1016/j.pmatsci.2015.06.001.
  • 45. Balaji S, Kumae R, Sripriya R et al. Characterization of keratin–collagen 3D scaffold for biomedical applications. Polymers for Advanced Technology. 2011;3:500-507. DOI: 10.1002/pat.1905.
  • 46. Li Q, Yang S, Zhu L, Kang H, et al. Dualstimuli sensitive keratin graft PHPMA as physiological trigger responsive drug carriers. Polymer Chemistry. 2015;15:2869-2878. DOI: 10.1039/C4PY01750A.
  • 47. Chen S, Hori N, Kajiyama M, Takemura A. Thermal responsive poly(Nisopropylacrylamide) grafted chicken feather keratin prepared via Surface initiated aqueous Cu(0)-mediated RDRP: Synthesis and properties. International Journal of Biological Macromolecules. 2020;153:364-372. DOI: 10.1016/j.ijbiomac.2020.02.277.
  • 48. Bajestani MI, Kader S, Monavarian M, et al. Material properties and cel compatibility of poly(γ-glutamic acid)-keratin hydrogels. International Journal of Biological Macromolecules. 2020;142:790-802. DOI: 0.1016/j.ijbiomac.2019.10.020.
  • 49. Lopes do Lago G, Felisberti MI. pH and thermo-responsive hybrid hydrogels based on PNIPAAM and keratin. European Polymer Journal. 2020;125:109538. DOI: 10.1016/j.eurpolymj.2020.109538.
  • 50. Ni N, Dumont MJ. Protein-Based Hydrogels Derived from Industrial Byproducts Containing Collagen, Keratin, Zein and Soy. Waste and Biomass Valorization. 2017;8:285–300. DOI: 10.1007/s12649-016-9684-0.
  • 51. Giuffrida MG, Mazzoli R, Pessione E. Back to the past: deciphering cultural heritage secrets by protein identification. Applied Microbiology and Biotechnology. 2018;102:5445–5455. DOI: 10.1007/s00253-018-8963-z.
  • 52. Naahidi S, Jafari M, Logan M, et al. Biocompatibility of hydrogelbased scaffolds for tissue engineering applications, Biotechnology Advances, 2017;35(5):530-544. DOI: 10.1016/j.biotechadv.2017.05.006.
  • 53. Dong C, Lv Y. Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New Perspective. Polymer. 2016;2:42. DOI: 10.3390/polym8020042.
  • 54. Wakuda Y, Nishimoto S, Suye S, Fujita S. Native collagen hydrogel nanofibers with anisotropic structure using coreshell electrospinning. Science Reports 2018:6;6248. DOI: 10.1038/s41598-018-24700-9.
  • 55. Chuang CH, Lin RZ, Melero-Martin JM, Chen YC. Comparison of covalently and physically crosslinked collagen hydrogels on mediating vascular network formation for engineering adipose tissue. Artificial Cells, Nanomedicine, and Biotechnology, An International Journal. 2018;46(3):434-447. DOI: 10.1080/21691401.2018.1499660.
  • 56. Tian Z, Liu W, Li G. The microstructure and stability of collagen hydrogel crosslinked by glutaraldehyde. Polymer Degradation and Stability. 2016;13:264-270. DOI: 10.1016/j.polymdegradstab.2016.06.015.
  • 57. Schroeder ME, Rodriguez AG, Speckl KF et all. Collagen networks within 3D PEG hydrogels support valvular interstitial cel matrix mineralization. Acta Biomaterialia. 2021;119:197-210. DOI: 10.1016/j.actbio.2020.11.012.
  • 58. Craciun G, Manaila E, Niculescu M, Ighigeanu D. Obtaining a new type of polyelectrolyte based on acrylamide and hydrolyzed collagen by electron beam irradiation. Polymer Bulletin. 2017;74:1299-1326. DOI: 10.1007/s00289-016-1778-0.
  • 59. Vedhanayagam M, Anandasadagopan S, Nair BU, Sreeram KJ. Polymethyl methacrylate (PMMA) grafted collagen scaffold reinforced by PdO–TiO2 nanocomposites. Materials Science and Engineering. 2020;108:110378-110390. DOI: 10.1016/j.msec.2019.110378.
  • 60. Lan W, Xu M, Zhang X, Zhao L, Huang D, Wei X, Chen W. Biomimetic polyvinyl alcohol/type II collagen hydrogels for cartilage tissue engineering. Journal Biomaterials Science Polymer Edition. 2020;9:1179-1198. DOI: 10.1080/09205063.2020.1747184.
  • 61. Agban Y, Mugisho OO, Thakur SS, Rupenthal ID. Characterization of Zinc Oxide Nanoparticle Crosslinked Collagen Hydrogel. Gels. 2020;4:37-46.
  • 62. Yue K, Liu Y, Byambaa B, Singh V, Liu W, Li X, Sun Y, Zhang SY, Tamayol A, Zhang P, Ng KW, Annabi N, Khademhosseini A. Visible Light Crosslinkable Human Hair Keratin Hydrogels. Bioengineering & Translational Medicine. 2017;1:37-48. DOI: 10.1002/btm2.10077.
  • 63. Lee C Pant B, Kim SB, Jang RS, Park S, Park M, Park SJ, Kim HY. Carbon Quantum Dots Incorporated Keratin/Polyvinyl Alcohol Hydrogels: Preparation and Photoluminescent Assessment. Mater Lett. 2017;207:57-61. DOI: 10.1016/j.matlet.2017.07.058.
  • 64. Gao Y, Gu S, Jia F, Wang Q, Gao G. „All-in-one” hydrolyzed keratin proteinmodified polyacrylamide composite hydrogel transducer. Chemical Engineering Journal. 2020;398:125555.
  • 65. Pourjavadi A, Kurdtabar M. Collagenbased highly porous hydrogel without any porogen: Synthesis and characteristics. European Polymer Journa. 2007;73(3):877-889. DOI: 10.1016/j.cej.2020.125555.
  • 66. Noppakundilograt S, Choopromkaw S, Kiatkamjornwong S. Hydrolyzed collagen-grafted-poly[(acrylic acid)-co-(methacrylic acid)] hydrogel for drug delivery. Journal of Polymer Applied Polymer Science. 2018;135(1):1-11.
  • 67. Ding C, Zhang M, Ma M, Zheng Z, Yang O, Feng R. Thermal and pH dual-responsive hydrogels based on semi-interpenetrating network of poly(N-isopropylacrylamide) and collagen nanofibrils. Polymer International. 2019;68(8):1468-1477.
  • 68. Tshai KY, Chin MH, Lim SS, Loh HS, Yong EHN, Nuge T. Fish Scale Collagen Functionalized Thermo-Responsive Nanofibres. KEM 2020;846:189–94.
  • 69. Ravichandrana R, Astrandb C, Patrac HK, Turnerc APF, Chotteaub V and Phopase J. Intelligent ECM mimetic injectable scaffolds based on functional collagen building blocks for tissue engineering and biomedical applications. Royal Society of Chemistry. 2017;7:21068-21078.
  • 70. Zhang J, Deng F, Liu W, Huang Y, Tu X, Kou H, He L, Wei B, Xu C, Wang H. Temperature responsive collagen-PNIPAAm conjugate: Preparation and fibrillogenesis. New Journal of Chemistry 2020;44:21261-21270. DOI: 10.1039/D0NJ04823B.
  • 71. Durkut S, Elçin YM. Synthesis and characterization of thermo-sensitive poly(N-vinylcaprolactam)-g-collagen. Artificial Cells, Nanomedicine, and Biotechnology. 2017;45(8):1665-1674. DOI: 10.1080/21691401.2016.1276925.
  • 72. Lee EJ, Kim YH. Synthesis and thermoresponsive properties of chitosan-g-poly (N-isopropylacrylamide) and HTCC-gpoly(N-isopropylacrylamide) copolymers. Fibers Polymers. 2010;11:164-169. DOI: 10.1007/s12221-010-0164-z.
  • 73. Curcio M, Puoci F, Spizzirri UG, Iemma F, Cirillo G, Parisi OI, Picci N. Negative Thermoresponsive Microspheres Based on Hydrolyzed Gelatin as Drug Delivery Device. AAPS PharmSciTech. 2010;11(2):652–662. DOI: 10.1208/s12249-010-9429-5.
  • 74. Zhu Q, Gong Y, Guo T, Deng Y, Ji J, Wang B, Hao S. Thermo-sensitive keratin hydrogel against iron-induced brain injury after experimental intracerebral hemorrhage. International Journal of Pharmaceutics. 2019;566:342-351. DOI: 10.1016/j.ijpharm.2019.05.076.
  • 75. Sun K, Guo J, He Y, Song P, Xiong Y, Wang R M. Fabrication of dual-sensitive keratin-based polymer hydrogels and their controllable release behaviors. Journal of Biomaterials Science, Polymer Edition. 2016;18:1926-1940. DOI: 10.1080/09205063.2016.1239955.
  • 76. Eslahi N, Simchi, A, Mehrjoo M, Shokrgozarc MA, Bonakdarc S. Hybrid crosslinked hydrogels based on fibrous protein/block copolymers and layered silicate nanoparticles: tunable thermosensitivity, biodegradability and mechanical durability. RSC Advances. 2016;6:62944-62957. DOI: 10.1039/D0BM01403F.
  • 77. Villanueva ME, Cuestasc ML, Pérezd CL, Campo V, Orto D, Copello GJ. Smart release of antimicrobial ZnO nanoplates from a pH-responsive keratin hydrogel. Journal of Colloid and Interface Science. 2019;536:372-380. DOI: 10.1016/j.jcis.2018.10.067.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13ad79b7-2d59-47da-9d2a-dfcce7364cf6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.