PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of Transition Possibilities between Drought Classifications Using Standardized Precipitation Index for Wet and Dry Periods – Lower Seyhan Plain, Türkiye Case

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the Karaisalı region of Türkiye, which has a semi-arid climate and is known to contain the extensive plains and rich water resources of the Seyhan Basin, was preferred as a study area for investigating wet and drought periods for a long timescale. Forty-one years of total precipitation data, between 1980 and 2020, belonging to the closest precipitation observation station located in the Karaisalı region were used. By using the Standardized Precipitation Index (SPI), which is one of the frequently used meteorological drought indices, drought classification probabilities, expected first transition period and residence time in each drought severity class values were calculated for the 12-month time scale. As a result of the study, it was determined that the most drought period took place in 2012 according to the examined time duration. In addition, the most wet period was observed in 2001. When various time scales were considered, SPI-3 and SPI-6 have Near Normal Wet periods, while SPI-9 and SPI-12 have Near Normal Drought periods. Extremely Wet periods were more numerous, while Extremely Drought periods lasted longer. In addition, 3 months after the end of the drought categories, it can be seen that the Wet and Drought periods change into Near Normal Wet and Near Normal Drought periods.
Rocznik
Strony
201--209
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Department of Civil Engineering, Adana Alparslan Türkeş Science and Technology University, Balcalı, Çatalan Cd., 01250 Sarıçam/Adana, Turkiye
  • Department of Civil Engineering, Adana Alparslan Türkeş Science and Technology University, Balcalı, Çatalan Cd., 01250 Sarıçam/Adana, Turkiye
autor
  • Department of Civil Engineering, Adana Alparslan Türkeş Science and Technology University, Balcalı, Çatalan Cd., 01250 Sarıçam/Adana, Turkiye
Bibliografia
  • 1. Alami, M.M., Hayat, E., Tayfur, G. 2017. Proposing a popular method for meteorological drought monitoring in the Kabul River Basin, Afghanistan. International Journal of Advanced Engineering Research and Science, 4(6), 237199. https://dx.doi.org/10.22161/ijaers.4.6.12
  • 2. Alawsi, M.A., Zubaidi, S.L., Al-Bdairi, N.S.S., Al-Ansari, N., Hashim, K. 2022. Drought forecasting: a review and assessment of the hybrid techniques and data pre-processing. Hydrology, 9(7), 115. https://doi.org/10.3390/hydrology9070115
  • 3. Bahrami, M., Bazrkar, S., Zarei, A. R. 2019. Modeling, prediction, and trend assessment of drought in Iran using standardized precipitation index. Journal of Water and Climate Change, 10(1), 181–196. https://doi.org/10.2166/wcc.2018.174
  • 4. Baig, M.R.I., Naikoo, M.W., Ansari, A.H., Ahmad, S., Rahman, A. 2022. Spatio-temporal analysis of precipitation pattern and trend using standardized precipitation index and Mann–Kendall test in coastal Andhra Pradesh. Modeling Earth Systems and Environment, 8(2), 2733–2752. https://doi.org/10.1007/s40808-021-01262-w
  • 5. Chisadza, B., Gwate, O., Ncube, F., Mpofu, N. 2023. Assessment and characterisation of hydro-meteorological droughts in the Upper Mzingwane sub-catchment of Zimbabwe. Natural Hazards, 1–25. https://doi.org/10.1007/s11069-022-05807-9
  • 6. Çuhadar, M., Atış, E. 2019. Drought Analysis in Ceyhan Basin Using Standardized Precipitation Index. Journal of the Institute of Science and Technology, 9(4), 2303–2312. https://doi.org/10.21597/jist.544432
  • 7. de Oliveira-Júnior, J. F., de Gois, G., de Lima Silva, I. J., de Oliveira Souza, E., Jardim, A. M. D. R. F., da Silva, M.V., Jamjareegulgarn, P. 2021. Wet and dry periods in the state of Alagoas (Northeast Brazil) via Standardized Precipitation Index. Journal of Atmospheric and Solar-Terrestrial Physics, 224, 105746. https://doi.org/10.1016/j.jastp.2021.105746
  • 8. Gąsiorek, E., Musiał, E. 2015. Evaluation of the Precision of Standardized Precipitation Index (SPI) Based on Years 1954-1995 in Łódź. Journal of Ecological Engineering, 16(4). https://doi.org/10.12911/22998993/59347
  • 9. General Directorate of Meteorology (MGM), Türkiye. https://www.mgm.gov.tr/, Accessed: 15 December 2022.
  • 10. General Directorate of State Hydraulic Works (DSI), Türkiye. https://www.dsi.gov.tr/, Accessed: 15 December 2022.
  • 11. Hackenbruch J., Kunz-Plapp T., Müller S., Schipper J.W. 2017. Tailoring climate parameters to information needs for local adaptation to climate change. Climate, 5(2), 25. https://doi.org/10.3390/cli5020025
  • 12. Isia, I., Hadibarata, T., Jusoh, M.N.H., Bhattacharjya, R.K., Shahedan, N.F., Bouaissi, A., Fitriyani, N.L., Syafrudin, M. 2023. Drought Analysis Based on Standardized Precipitation Evapotranspiration Index and Standardized Precipitation Index in Sarawak, Malaysia. Sustainability, 15(1), 734. https://doi.org/10.3390/su15010734
  • 13. Kamruzzaman, M., Almazroui, M., Salam, M. A., Mondol, M. A. H., Rahman, M., Deb, L., Islam, A. R. M. 2022. Spatiotemporal drought analysis in Bangladesh using the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI). Scientific Reports, 12(1), 1–17. https://doi.org/10.1038/s41598-022-24146-0
  • 14. Keskiner, A.D., Çetin, M., Uçan, M., Şimşek, M. 2016. Meteorological Drought Analysis with Different Return Periods by Using Standardized Precipitation Index in Geographic Information Systems Environment: A Case Study in The Seyhan River Basin. Çukurova Journal of Agricultural and Food Sciences, 31(2), 79–90.
  • 15. Lyra, G.B., Oliveira-Júnior, J.F., Gois, G., Cunha-Zeri, G., Zeri, M. 2017. Rainfall variability over Alagoas under the influences of SST anomalies. Meteorology and Atmospheric Physics, 129(2), 157–171. https://doi.org/10.1007/s00703-016-0461-1
  • 16. Malik A., Kumar A. 2020. Spatio-temporal trend analysis of rainfall using parametric and non-parametric tests: case study in Uttarakhand, India. Theor Appl Climatol, 140, 183–207. https://doi.org/10.1007/s00704-019-03080-8
  • 17. McKee, T.B., Doesken, N.J., Kleist, J. 1993. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, 17(22), 179–183.
  • 18. Mega, N., Medjerab, A. 2021. Statistical comparison between the standardized precipitation index and the standardized precipitation drought index. Modeling Earth Systems and Environment, 7(1), 373–388. https://doi.org/10.1007/s40808-021-01098-4
  • 19. Mondal, S.K., Tao, H., Huang, J., Wang, Y., Su, B., Zhai, J., Jing, C., Wen, S., Jiang, S., Chen, Z., Jiang, T. 2021. Projected changes in temperature, precipitation, and potential evapotranspiration across Indus River Basin at 1.5–3.0 °C warming levels using CMIP6-GCMs. Sci Total Environ, 789, 147867. https://doi.org/10.1016/j.scitotenv.2021.147867
  • 20. Ministry of Forestry and Water Affairs of the Republic of Türkiye. 2019. Report of Seyhan Basin Sectoral Water Allocation Plan. https://www.tarimorman.gov.tr/, Accessed: 15 December 2022.
  • 21. Pham, H.X., Shamseldin, A.Y., Melville, B.W. 2021. Projection of future extreme precipitation: a robust assessment of downscaled daily precipitation. Nat Hazards, 107(1), 311–329. https://doi.org/10.1016/j.jastp.2021.105746
  • 22. Radzka, E. 2015. The assessment of atmospheric drought during vegetation season (according to standardized precipitation index SPI) in central-eastern Poland. Journal of Ecological Engineering, 16(1). https://doi.org/10.12911/22998993/591
  • 23. Republic of Türkiye Adana Metropolitan Municipality 2022. Strategic Plan, 2020–2024. Topic: Drought. https://www.adana.bel.tr/, Accessed: 15 December 2022.
  • 24. Republic of Türkiye Ministry of Forestry and Water Affairs, General Directorate of State Hydraulic Works (DSI) 2020. https://www.dsi.gov.tr/ Accessed: 15 December 2022.
  • 25. Saada, N., Abu-Romman, A. 2017. Multi-site modeling and simulation of the standardized precipitation index (SPI) in Jordan. Journal of Hydrology: Regional Studies, 14, 83–91. https://doi.org/10.1016/j.ejrh.2017.11.002
  • 26. Saini, D., Singh, O., Bhardwaj, P. 2020. Standardized precipitation index based dry and wet conditions over a dryland ecosystem of northwestern India. Geol Ecol Landsc. https://doi.org/10.1080/24749508.2020.1833614
  • 27. Siddig, K., Stepanyan, D., Wiebelt, M., Grethe, H., Zhu, T. 2020. Climate change and agriculture in the Sudan: impact pathways beyond changes in mean rainfall and temperature. Ecol Econ, 169, 106566. https://doi.org/10.1016/j.ecolecon.2019.106566
  • 28. Turhan, E., Değerli, S., Çatal, E.N. 2022. Standardize Akım İndeksine Göre Nemli ve Kurak Dönemler ile Sınıflandırmalar Arası Geçiş Olasılıklarının Uzun Zaman Periyodunda Analizi. 11. Ulusal Hidroloji Kongresi, Gaziantep University. (in Turkish)
  • 29. Yıldırım, I., Aksoy, H. 2019. Gediz Havzası’nda SPI kuraklık sınıfları geçiş olasılıklarının belirlenmesi. 10. Ulusal Hidroloji Kongresi, Muğla Sıtkı Koçman University. (in Turkish)
  • 30. Tatar, S., Eris, E. 2022. Drought Class Probability Analysis for the Küçük Menderes River Basin. Scientific Research Communications, 2(2). https://doi.org/10.52460/src.2022.006
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13a8f172-f1ca-42ff-a88c-8f8df136db1c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.