PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Challenges for the DOE methodology related to the introduction of Industry 4.0

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The introduction of solutions conventionally called Industry 4.0 to the industry resulted in the need to make many changes in the traditional procedures of industrial data analysis based on the DOE (Design of Experiments) methodology. The increase in the number of controlled and observed factors considered, the intensity of the data stream and the size of the analyzed datasets revealed the shortcomings of the existing procedures. Modifying procedures by adapting Big Data solutions and data-driven methods is becoming an increasingly pressing need. The article presents the current methods of DOE, considers the existing problems caused by the introduction of mass automation and data integration under Industry 4.0, and indicates the most promising areas in which to look for possible problem solutions.
Słowa kluczowe
Rocznik
Strony
190--194
Opis fizyczny
Bibliogr. 44 poz., rys.
Twórcy
  • Cracow University of Technology, 31-864 Kraków, Al. Jana Pawła II 37, Poland
  • Kielce University of Technology, 25-314 Kielce, Al. Tysiąclecia Państwa Polskiego 7, Poland
  • Khmelnytsky National University, 29000 Khmelnytskyi, Instytutska Str. 11, Ukraine
Bibliografia
  • 1.Bhote, K.R., Bhote, A.K., 2000. World Class Quality. Using Design of Experiments to Make It Happen, AMACOM, New York.
  • 2.Box, G.E.P.,1957. Evolutionary Operation: A Method for Increasing Industrial Productivity, Journal of the Royal Statistical Society Series C-Applied Statistics, 6(2), 81-101, DOI: 10.2307/2985505
  • 3.Box, G. E. P., Wilson, K. B., 1951. On the Experimental Attainment of Optimum Conditions, Journal of the Royal Statistical Society Series B-Statistical Methodology, 13(1), 1-45.
  • 4.Capriz, G., Ghionna, V.N., Giovine, P., 2002. Modeling and Mechanics of Granular and Porous Materials, Boston, Birkhäuser. DOI: 10.1007/978- 1-4612-0079-6
  • 5.Echeverria-Rios, D. Green, P.L., 2019. Gaussian processes for regression and classificationtasks using non-gaussian likelihoods, UNCECOMP 2019 3rd ECCOMAS Thematic Conference on Uncertainty Quantification in Computational Sciences and Engineering, 555-568. DOI: 10.7712/120219.6359.18465
  • 6.Fisher, R.A., 1921. Studies in Crop Variation. I. An examination of the yield of dressed grain from Broadbalk, Journal of Agricultural Science 11(2), 107-135, DOI: 10.1017/S0021859600003750
  • 7.Fisher, R.A., 1925. Statistical Methods for Research Workers. Edinburgh, Oliver and Boyd Press.
  • 8.Heinz, S., 2011. Mathematical Modeling, Heidelberg, Springer. DOI: 10.1007/978-3-642-20311-4
  • 9.Ingaldi, M., Ulewicz, R., 2018. Evaluation of quality of the e-commerce service, International Journal of Ambient Computing and Intelligence 9(2), 55-66, DOI: 10.4018/IJACI.2018040105
  • 10.Izenman, A.J., 2008. Modern Multivariate Statistical Techniques. Regression, Classification, and Manifold Learning, New York, Springer Science+Business Media.s
  • 11.Karpisz, D., Kiełbus, A., 2018. Selected problems of designing modern industrial databases, MATEC Web of Conferences, 183, art. 01017, DOI: 10.1051/matecconf/201818301017
  • 12.Kiefer, J., Wolfowitz, J., 1952. Stochastic Estimation of the Maximum of a Regression Function, The Annals of Mathematical Statistics, 23(3), 462- 466. DOI: 10.1214/aoms/1177729392
  • 13.Kiefer, J., Wolfowitz, J., 1959. Optimum Designs in Regression Problems, Annals of Mathematical Statistics, 30(2), 271-294, DOI: 10.1214/aoms/1177706252
  • 14.Korzekwa, J., Bociąga, E., Bochenek, D., 2020. Investigation of selected polymer composite-aluminum oxide coating tribological systems, Materials, 13(23), art. 5491, DOI: 10.3390/ma13235491
  • 15.Korzekwa, J., Gądek-Moszczak, A., Zubko, M., 2018. Influence of the Size of Nanoparticles on the Microstructure of Oxide Coatings, Materials Science, 53(5), 709-716, DOI: 10.1007/s11003-018-0127-x
  • 16.Lipiński, T., 2015. Modification of Al-11% Si alloy with Cl-based modifier, Manufacturing Technology, 15(4), 581-587.
  • 17.Lipiński, T., 2017. Corrosion effect of 20 % NaCl solution on basic carbon structural S235JR steel, Engineering for Rural Development, 16, 2017, 1069-1074, DOI: 10.22616/ERDev2017.16.N225
  • 18.Lipiński, T., Wach, A., 2015. Dimensional structure of non-metallic inclusions in high-grade medium carbon steel melted in an electric furnace and subjected to desulfurization, Solid State Phenomena, 223, 46-53, DOI: 10.4028/www.scientific.net/SSP.223.46
  • 19.Mardia, K.V., Jupp, P.E., 2000. Directional Statistics, Hoboken, Wiley.
  • 20.Montgomery, D.C., 2020. Introduction to Statistical Quality Control, 8 th Edition, Hoboken, Wiley.
  • 21.Pacana, A., Czerwińska, K., Bednárová, L., 2018. Discrepancies analysis of casts of diesel engine piston, Metalurgija, 57(4), 324-326.
  • 22.Pacana, A., Gazda, A., Malindzak, D., Stefko, R., 2014. Study on improving the quality of stretch film by Shainin method, Przemysł Chemiczny, 93(2), 243-245, DOI: 10.12916/przemchem.2014.243
  • 23.Panasenko, G., 2005. Multi-scale Modelling for Structure and Composites, Dordrecht, Springer.
  • 24.Patek, M., Konar, R., Sladek, A., Radek, N., 2014. Non-destructive testing of split sleeve welds by the ultrasonic TOFD method, Manufacturing Technology, 14(3), 403-407.
  • 25.Pedrycz, W., Chen, S.-M. (eds.), 2013. Time Series Analysis, Modeling and Applications, Springer, Heidelberg, DOI: 10.1007/978-3-642-33439-9
  • 26.Phadke, M.S., 1989. Quality Engineering Using Robust Design, London, Prentice Hall International, Inc.
  • 27.Pietraszek, J., Dwornicka, R., Krawczyk, M., Kołomycki, M., 2017. The nonparametric approach to the quantification of the uncertainty in the design of experiments modelling, UNCECOMP 2017 - Proceedings of the 2nd International Conference on Uncertainty Quantification in Computational Sciences and Engineering, 598-604, DOI: 10.7712/120217.5395.17225
  • 28.Pietraszek, J., Dwornicka, R., Szczotok, A., 2016. The bootstrap approach to the statistical significance of parameters in the fixed effects model, ECCOMAS Congress 2016 - Proceedings of the 7th European Congress on Computational Methods in Applied Sciences and Engineering, 3, 6061-6068, DOI: 10.7712/100016.2240.9206
  • 29.Pietraszek, J., Goroshko, A., 2014. The heuristic approach to the selection of experimental design, model and valid pre-processing transformation of DoE outcome, Advanced Materials Research, 874, 145-149, DOI: 10.4028/www.scientific.net/AMR.874.145
  • 30.Pietraszek, J., Skrzypczak-Pietraszek, E., 2015. The uncertainty and robustness of the principal component analysis as a tool for the dimensionality reduction, Solid State Phenomena, 235, 1-8, DOI: 10.4028/www.scientific.net/SSP.235.1
  • 31.Rajak, D.K., Gupta, M., 2020. An Insight Into Metal Based Foams, Singapore, Springer, DOI: 10.1007/978-981-15-9069-6
  • 32.Robbins, H., Monro, S., 1951. A Stochastic Approximation Method, The Annals of Mathematical Statistics, 22(3): 400-407, DOI: 10.1214/aoms/1177729586
  • 33.Scheffé, H., 1958. Experiments with Mixtures, Journal of the Royal Statistical Society Series B-Statistical Methodology, 20(2), 344-360, DOE: 10.1111/j.2517-6161.1958.tb00299.x
  • 34.Sherman, M., 2011. Spatial Statistics and Spatio-Temporal Data. Covariance Functions and Directional Properties, Hoboken, Wiley.
  • 35.Shumway, R.H., Stoffer, D.S., 2017. Time Series Analysis and Its Applications, With R Examples. Fourth Edition, Springer, Cham, DOI: 10.1007/978-3-319-52452-8
  • 36.Skrzypczak-Pietraszek, E., Skrzypczak, L., Wesolowska, M., 1993. Gentiana tibetica King from tissue culture, Scientia Pharmaceutica, 61(4), 287-296.
  • 37.Szczotok, A., Roskosz, S., 2005. New possibilities of light microscopy research resulting from digital recording of images, Materials Science-Poland, 23(2), 559-565.
  • 38.Szczotok, A., Sozańska, M., 2009. A comparison of grain quantitative evaluation performed with standard method of imaging with light microscopy and EBSD analysis, Praktische Metallographie/Practical Metallography, 46(9), 454-468, DOI: 10.3139/147.110043
  • 39.Trzewiczek, K., Szczotok, A., Gadek-Moszczak, A., 2014. Evaluation of the state for the material of the live steam superheater pipe coils of V degree, Advanced Materials Research, 874, 35-42, DOI: 10.4028/www.scientific.net/AMR.874.35
  • 40.Ulewicz, R., 2014. Application of servqual method for evaluation of quality of educational services at the university of higher education, Polish Journal of Management, 9, 254-264.
  • 41.Włodarczyk, R., Dudek, A., Nitkiewicz, Z., 2011. Corrosion analysis of sintered material used for low-temperature fuel cell plates, Archives of Metallurgy and Materials, 56(1), 181-186, DOI: 10.2478/v10172-011-0021-0
  • 42.Wojnar, L., Gadek-Moszczak, A. Pietraszek, J., 2019. On the role of histomorphometric (stereological) microstructure parameters inthe prediction of vertebrae compression strength, Image Analysis and Stereology, 38(1), 63-73, DOI: 10.5566/ias.2028
  • 43.Wrońska, A., Dudek, A., 2014. Characteristics of surface layer of sintered stainless steels after remelting using GTAW method, Archives of Civil and Mechanical Engineering, 14(3), 425-432, DOI: 10.1016/j.acme.2013.10.011
  • 44.Yates, F., 1935. Complex experiments, Supplement to the Journal of the Royal Statistical Society, 2(2), 181-247, DOI: 10.2307/2983638
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13a60c5b-7f19-412a-8b1b-32a589c7fb63
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.