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 Abstract 

The introduction of solutions conventionally called Industry 4.0 to the industry resulted in the need to 

make many changes in the traditional procedures of industrial data analysis based on the DOE (Design 

of Experiments) methodology. The increase in the number of controlled and observed factors consid-

ered, the intensity of the data stream and the size of the analyzed datasets revealed the shortcomings 

of the existing procedures. Modifying procedures by adapting Big Data solutions and data-driven 

methods is becoming an increasingly pressing need. The article presents the current methods of DOE, 

considers the existing problems caused by the introduction of mass automation and data integration 

under Industry 4.0, and indicates the most promising areas in which to look for possible problem so-

lutions.  
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1. Introduction 

Historians distinguish three industrial revolutions related to 

radical changes in production techniques and their effects: 

a geographic and social change in the distribution of wealth, 

a change in social relations, and even a change, considered 

typical in a given era, in family structure. These are the era of 

steam that began at the end of the 18th century, the era of elec-

tricity dating back to the turn of the 19th and 20th centuries, 

and the era of computers, the conventional beginning of which 

was established in the 1970s.  

Industry 4.0 is a name referring to the promoted "fourth in-

dustrial revolution", hence the number, consisting in the inte-

gration of manufacturing and automation techniques, data pro-

cessing and exchange. A characteristic feature of these 

successive changes is the delay, from several to several dozen 

years, between an invention characteristic of a given revolu-

tion and a massive change in the organizational and produc-

tion paradigm. In the case of the postulated fourth industrial 

revolution, the Internet is such a characteristic invention, 

which created a universal and uniform platform for connecting 

various devices at any distance. 

Each of the parts included in the information-integrated pro-

duction team has been designed and is associated with an ap-

propriate model of functioning. The complexity of production 

processes, and in particular the disruptive effects of uncon-

trolled environmental and raw material factors, make it impos-

sible to stabilize and optimize the process in its entirety. It is 

necessary to create empirical models of functioning focused 

on the local aspect of optimization and stabilization. The ob-

tained predictive models are then the basis for making deci-

sions about the necessary corrective actions. 

The appropriate tool to carry out these activities is the DOE 

(Design of Experiment) methodology, known since the 1930s. 

Its origins are marked by the publications of Fisher (Fisher, 

1921; Fisher, 1925), referring to the ANOVA method and 

Latin squares derived from it, and Yates (Yates, 1935), who 

developed factorial experimental designs and methods for 

their analysis. The DOE methodology allowed the Allies to 

achieve significant successes in industrial production and lo-

gistics during World War II. In the next decade, the method-

ology was adapted to the needs of the chemical industry (Box 

and Wilson, 1951; Scheffe, 1958) by introducing the response 

surface methodology (RSM) and mixture plans. The systema-

tization of related formalism is the achievement of two pairs 
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of mathematicians: Robbins and Monroe (Robbins and Mon-

roe, 1951) and Kiefer and Wolfowitz (Kiefer and Wolfowitz, 

1952; Kiefer and Wolfowitz, 1959). The most spectacular suc-

cesses were achieved during the time-strenuous Apollo pro-

gram, when new materials and new devices had to be devel-

oped in less than a decade and ensured that they achieved both 

high and stable operating parameters. In turn, the construction 

of the lunar lander was qualitatively supervised at Grumman 

by Dorian Shainin (Bhote and Bhote, 2000), who became the 

author of the well-known Red-X™ methodology for effective 

process stabilization. The effectiveness of his methods is 

proved by the fact that during any flight to the moon the 

lander's devices did not fail. 

The traditional DOE methodology was and still is used with 

the assumption that the data set necessary to build a predictive 

model and arrive at a design or technological decision should 

be as small as possible, since each set of measurements is as-

sociated with an experimental test that is costly and/or time 

consuming. Hence, the method of constructing the experiment 

was defined as designed to achieve the assumed informational 

and statistical features with a minimized number of tests. 

The Industry 4.0 production environment is of a different 

nature, as the mass sensing of automated production lines has 

resulted in the current data stream being very high, and the 

created archival datasets are huge (Karpisz and Kiełbus, 

2018). Automated production lines and the processes carried 

out on them react badly to forcing parameter settings signifi-

cantly deviating from stable process settings, and this is an el-

ement of the tests carried out in the DOE methodology, where 

the response of the process to such a "jerk" with parameters is 

observed. Among the methods of analyzing the obtained big 

data set, the dominant methods are either correlational or 

based on machine learning. With all their advantages, they 

have one major disadvantage: the lack of showing and justify-

ing possible cause-effect relationships. An additional draw-

back is the requirement to use, in most cases, very high com-

puting power obtained only in cloud infrastructure. 

In this situation, it is desirable to modify and extend the ex-

isting DOE methodology in such a way that, while maintain-

ing its current advantages, it can be used for data analysis and 

creating predictive models in the Industry 4.0 environment. 

This need is rationale why this article deals with the challenges 

facing the DOE methodology in relation to the expansion of 

the areas covered by Industry 4.0. 

The starting point for this consideration is the compilation, 

characterization and comparison of four basic DOE method-

ologies, which are widely used and which have become the 

analytical basis for more complex approaches, e.g. data-driven 

DMAIC (Define, Measure, Analyze, Improve and Control) 

used as a core part of SixSigma (Montgomery, 2020). The next 

necessary step is to consider what major change, from the data 

analysis point of view, is introduced by the Industry 4.0 con-

text. Finally, the suggested changes that should be made to 

maintain the usefulness of the DOE methodology should be 

identified. The following considerations are currently only a 

starting point to identify those areas of applied mathematics, 

the adaptation of which to the needs of DOE seems to be the 

most promising and effective. Only narrow-scope studies fo-

cused on specific fragments of the methodology will provide 

the necessary solutions, but without a general overview of the 

situation, it would not be known which of these areas to ex-

plore. 

2. Four traditional DOE approaches 

In the area of DOE methodology, four separate approaches 

to the problem of designing an experiment and building pre-

dictive models can be distinguished (Figure 1). 

 

 

Fig. 1. Four components of the current DOE methodology 

The most common, especially in the engineering industry, 

is the factor`ial approach developed by Yates (Yates, 1935). It 

is characterized, especially in the case of two-level designs, by 

a very simple development, application and analysis. The fac-

torial approach enables both an in-depth analysis of the influ-

ence of controlled factors and their possible interactions of any 

order (full factorial variant), and the limitation of the number 

of experimental tests without determining interactions of 

higher orders (fractional factorial variant). In the first case, 

a rich set of information is obtained, but at high economic 

costs, in the second case, these costs are limited, but so is the 

set of information. The Yates’s factorial approach is also the 

starting point for the Evolutionary Operation (EVOP) method 

proposed by Box (Box, 1957), which is a solution for contin-

uous manufacturing processes. 

The direct competitors of the factorial approach are the Fish-

er's Latin squares and the Taguchi method (Robust Design). 

The first case, historically the oldest (Fisher, 1925), is directed 

specifically at the analysis of exactly three controlled factors, 

of which usually one is of interest to the experimenter, and the 

other two are the dominant environmental factors masking the 

influence of the former. The method allows the application of 

multiple levels of factor control, but also imposes limitations 

as it does not allow for the study of interactions and all factors 

must have the same number of levels. The Taguchi method 

(Phadke, 1989), developed more than thirty years later in the 

1950s and 1960s, removed some of the limitations of Latin 

squares while introducing the whole concept of robust design 
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in which process stability takes precedence over local optimi-

zation of the process response. Taguchi's approach assumed 

the decomposition of the experimental design into two distinct 

ones: the internal array, controlling highly controlled factors, 

and the external array, determining factors poorly controlled 

or simulated environmental disturbing factors. 

At the same time, mainly in the chemical industry, but also 

in metal industry (Lipiński, 2015; Lipiński and Wach, 2015), 

in anti-corrosion protection (Włodarczyk et al., 2011; 

Wrońska and Dudek, 2014; Lipiński, 2017), biotechnology 

(Skrzypczak-Pietraszek et al., 1993) and medical research 

(Wojnar et al., 2019), the response surface methodology 

(RSM) initiated by Box and Wilson (Box and Wilson, 1951), 

and later modified by Scheffe (Scheffe, 1958) for testing mix-

tures was developed. The main difference from the previously 

mentioned methods was the introduction of controlled factors 

with continuous settings and the imposition of the structure of 

the predictive model in the form of a predetermined function 

with unknown parameters. Additionally, in the case of mix-

tures, there was the so-called the condition of summability, 

which meant that the settings of the controlled factors (shares 

of the mixture components) could not be selected freely in the 

experiment, but had to add up to a constant value, usually up 

to 100%. 

A characteristic feature of the methods mentioned so far was 

the so-called static approach, meaning that all previously 

planned measurements had to be performed before starting the 

analysis. A different solution was proposed by Dorian Shainin 

in his methodology Red-X™ (Bhote and Bhote, 2000; Pacana 

et al., 2014; Pacana et al., 2018), which he perfected for sev-

eral decades while working at Grumman Aircraft and General 

Motors, and after retiring at the Shainin Institute he founded 

in 1990s. The purpose of the Shainin method is solely to sta-

bilize the process by identifying those controlled factors that 

are the main causes of process instability. Shainin's method is 

oriented towards the intensive use of local engineering 

knowledge of the studied process and the sequential interleav-

ing of tests and subsequent analyzes. This approach allows 

you to discontinue testing after the major confounders have 

been identified, thus saving significant resources over typical 

static experimental testing schemes. Shainin's approach is not 

a single analytical or computational method, but a complete 

scheme of conduct, also organizational, and in this respect it 

is very similar to Six-Sigma, the structure of which also in-

cludes building a predictive model based on DOE. 

Summarizing, it can be concluded that all the above meth-

ods of proceeding assume relatively small data sets and a low 

data stream intensity. This feature is beneficial in traditional 

industry, but becomes a strong limitation in the context of In-

dustry 4.0. 

3. Data feed changes in Industry 4.0  

Industry 4.0 is primarily the automation of production lines 

and the integration of data transmission within them. This 

means that the source of data are numerous sensors that are 

supposed to provide information to the controllers of the pro-

duction line. Thus, the intensity of the data stream is large and 

the collected data sets are huge. Consequently, the number of 

controlled factors is large or very large. Production databases 

are fed with constant streams of information that can be either 

processed on-line or processed off-line. Process runs, nomi-

nally running according to the settings of controlled factors, 

are constantly subjected to disturbances with variable charac-

teristics, which is immediately reflected in the transmitted 

measurement data. 

Due to the fact that they are automated lines with reduced 

staff, they achieve the highest economic efficiency in a con-

tinuous operation pattern. Therefore, the traditional DOE ap-

proach to building predictive models, assuming the perfor-

mance of experimental tests in combination with a large 

deviation from typical production settings, is very reluctant to 

be accepted by process engineers because it causes instability 

of the process. The management board is also against this, as 

the production obtained during such experiments does not 

meet the requirements of formal quality assurance systems and 

is therefore only suitable for scrapping and thus is a large ad-

ditional cost. 

Hence, more and more requests are addressed that the ana-

lytical methods should reduce the scope of the designed ex-

periments, and start to rely more on passive observations that 

can be obtained from production databases or, at most, to use 

design experiments with small ranges of deviations from the 

nominal process settings, so as not to violate the formal re-

quirements of the system quality assurance. 

4. Suggested changes 

Taking into account the above considerations, specific com-

ments can be formulated. Certainly, the methods must be less 

invasive and more observational. This means a departure from 

the paradigm of a designed experiment towards passive meth-

ods that have so far been more used in biology or medicine. In 

analytical methods, it will be necessary to take into account 

the unfavorable correlations, which so far have been reduced 

or even zeroed through the appropriate selection of orthogonal 

designs. 

In continuous processes, it will be appropriate to implement 

the EVOP method or its appropriate modifications, as its 

scheme of operation allows to maintain the formal require-

ments of the quality assurance system despite the experiment 

being conducted at the moment. Thus, losses related to the 

scrapping of the current production are avoided. It is purpose-

ful to develop the existing and implement new non-destructive 

testing methods (Patek et al., 2014; Trzewiczek et al., 2014), 

as this minimizes economic losses. Image analysis methods 

(Szczotok and Roskosz, 2005; Szczotok and Sozańska, 2009) 

seem to be particularly promising here, as the theoretical and 

analytical background is very developed, and the current de-

velopment of both optical devices and processing power al-

lows for using these methods online. 

As far as analytical methods are concerned, it is necessary 

to implement analyzes within the DOE that are appropriate for 

the time series (Pedrycz and Chen, 2013; Shumway and Stof-

fer, 2017), as currently production environments are charac-
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terized by high time variability. This approach, partially al-

ready implemented in Shainin's method through Multi-Vari ™ 

plots (Bhote and Bhote, 2000), allows the identification of un-

known confounders by identifying temporal instability pat-

terns. 

In research, design and diagnostics, unlike in a typical man-

ufacturing industry, multivariate statistics and stochastic fields 

are increasingly used, in particular directional statistics (Mar-

dia and Jupp, 2000), multivariate and non-linear approaches 

(Izenman, 2008), and spatio-temporal statistics (Sherman, 

2011). These highly advanced analytical methods, which dif-

fer greatly in mathematical apparatus from relatively simple 

industrial methods, are particularly useful for analyzing the 

properties and behavior of materials with complex microstruc-

tures (Capriz et al., 2002), non-isotropic materials, and mate-

rials whose properties change rapidly over time, e.g. metal 

foams (Rajak and Gupta, 2020), composites (Panasenko, 

2005) and nanomaterials (Korzekwa et al., 2018; Korzekwa et 

al., 2020). 

It is desirable to replace the existing parametric predictive 

models with a non-parametric, data driven model (Heinz, 

2011). Such an approach, however, means the necessity to 

change the methods of estimating uncertainty, as the existing 

ones were based on numerous assumptions, e.g. model para-

metricity, linearity of parameters, use of the least squares 

method, normality of the distribution of disturbing factors, etc. 

A convenient method of estimating uncertainty in such 

cases is the bootstrap method, based on resampling the data 

set (Pietraszek et al., 2016; Pietraszek et al., 2017). Obviously, 

the different methods of data analysis lead to differences in the 

selection of appropriate experimental plans and possible pre-

processing of measurement data (Pietraszek and Goroshko, 

2014). To avoid the need to analyze very large data sets, it is 

advisable to use dimensional reduction methods (Pietraszek 

and Skrzypczak-Pietraszek, 2015). This is highly desirable for 

both parametric and machine learning approaches. There may 

also be difficult issues where, for example, the data has been 

damaged by noise whose distribution has tails heavier than 

Gaussian (Echeverria and Green, 2019). Similar problems re-

lated to the estimation of uncertainty may also appear in the 

area of management, therefore the discussion presented in this 

article may be interesting for managers of education (Ulewicz, 

2014) and trade (Ingaldi and Ulewicz, 2018). 

5. Conclusion 

The article discusses the difficulties that the DOE method-

ology encounters in the context of Industry 4.0. The four DOE 

methods – factorial, response surface, Taguchi and Shainin 

Red-X™ – and their characteristics were characterized. The 

main sources of difficulties that DOE methods encounter 

when used in the Industry 4.0 environment have been identi-

fied. These are large data streams, huge data sets, large data 

dimensions, non-Gaussian data distributions, non-linear rela-

tionships between controlled factors. The proposed directions 

of modifications, considered to be promising, include data-

driven preprocessing combined with dimensional reduction, 

the use of non-parametric models taking into account highly 

nonlinear relationships, the introduction of coupled multivari-

ate descriptions using appropriate multivariate statistics, em-

pirical identification of distributions using Monte Carlo meth-

ods. 

Further investigations will include the collection of appro-

priate empirical datasets together with descriptions of use 

cases to verify the validity of the use for specific data analysis 

methods and determine their applicability and/or limitations, 

and if necessary, make necessary adaptations and develop de-

tailed guidelines for use, especially when applying them inside 

other approaches e.g. SixSigma. 
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DOE方法论与工业4.0引入相关的挑战 
 

關鍵詞 

美国能源部 

工业4.0 

数据驱动的方法 

不确定 

 摘要 

将通常称为“工业4.0”的解决方案引入该行业导致需要对基于DOE（实验设计）方法的传统工

业数据分析程序进行许多更改。 所考虑的受控因素和观察因素数量的增加，数据流的强度以

及所分析数据集的大小揭示了现有程序的缺点。 通过适应大数据解决方案和数据驱动方法来

修改程序变得越来越迫切。 本文介绍了DOE的当前方法，考虑了工业4.0下引入大规模自动化

和数据集成引起的现有问题，并指出了寻找可能的问题解决方案的最有希望的领域。 

 

 

 


