PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Student review of innovations in quantum biophotonics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the paper is to show how graduated engineering students in classical ICT view practically the advent of the QIT. The students do their theses in El.Eng. and ICT and were asked how to implement now or in the future the QIT in their current or future work. Most of them have strictly defined research topics and in some cases the realization stage is advanced. Thus, most of the potential QIT application areas are defined and quite narrow. I n such a case, the issue to be considered is the incorporation of QIT components and interfaces into the existing ICT infrastructure, software and hardware alike, and propose a solution as a reasonable functional hybrid system. The QIT components or circuits are not standalone in most cases, they should be somehow incorporated into existing environment, with a measurable added value. Not an easy task indeed. We have to excuse the students if the proposed solutions are not ripe enough. The exercise was proposed as an on-purpose publication workshop, related strictly to the fast and fascinating development of the QIT. The paper is a continuation of publishing exercises with previous groups of students participating in QIT lectures.
Twórcy
  • Warsaw University of Technology, Warsaw, Poland
  • Warsaw University of Technology, Warsaw, Poland
  • Warsaw University of Technology, Warsaw, Poland
  • Warsaw University of Technology, Warsaw, Poland
  • Warsaw University of Technology, Warsaw, Poland
autor
  • Warsaw University of Technology, Warsaw, Poland
autor
  • Warsaw University of Technology, Warsaw, Poland
autor
  • Warsaw University of Technology, Warsaw, Poland
  • Warsaw University of Technology, Warsaw, Poland
autor
  • Warsaw University of Technology, Warsaw, Poland
  • Warsaw University of Technology, Warsaw, Poland
  • Warsaw University of Technology, Warsaw, Poland
  • Warsaw University of Technology, Warsaw, Poland
Bibliografia
  • [1] A. Twarowska, J. Wietczak, K. Szydłowski, M. Kaczmarczyk, M. Kaczkowski, O. Pawlak, B. Mastej, M. Stranz, K. Hacaś, B. Sweklej, and R. Romaniuk, “Students’ view of quantum information technologies, part 3,” International Journal of Electronics and Telecommunications, vol. 70, pp. 509-518, 05 2024. [Online]. Available: https://doi.org/10.24425/ijet.2024.149573
  • [2] F. Mańka, K. Klekowiecka, M. Kowalczyk, U. Wardzyńska, E. Borkowska, M. Kłodnicki, R. Łuszczyński, T. Żarnovsky, K. Hacaś, and R. Romaniuk, “Students’ view of quantum information technologies, part 4,” International Journal of Electronics and Telecommunications, pp. 215-215, 04 2025. [Online]. Available: https://doi.org/10.24425/ijet.2025.153565
  • [3] M. Wojtkowski, M. Bartoszewski, W. Buchwald, K. Joachimczyk, A. Kawala, and R. Romaniuk, “Students’ view of quantum information technologies, part 2,” International Journal of Electronics and Telecommunications, vol. 70, pp. 241-246, 03 2024. [Online]. Available: https://doi.org/10.24425/ijet.2024.149536
  • [4] M. Kowalczyk, U. Wardzyńska, E. Borkowska, K. Klekowiecka, M. Kłodnicki, R. Łuszczy´nski, F. Mańka, T. Żarnovsky, K. Hacaś, and R. Romaniuk, “Students’ view of quantum information technologies, part 4,” International Journal of Electronics and Telecommunications, vol. 71, pp. 209-218, 03 2025. [Online]. Available: https://doi.org/10.24425/ijet.2025.153564
  • [5] A. Paler and S. J. Devitt, “An introduction to fault-tolerant quantum computing,” 2015.
  • [6] Quantum Internet Alliance, “Quantum internet alliance,” https://quantuminternetalliance.org , 2023, accessed: 2025-05-14.
  • [7] T. Lugrin, One-Time Pad, 04 2023, pp. 3-6. [Online]. Available: https://doi.org/10.1007/978-3-031-33386-6 1
  • [8] V. Karthick, H. S, and J. K, “True random number generation on ibm real-time quantum computer for secure and unpredictable cryptographic applications,” 07 2024, pp. 1-6. [Online]. Available: https://doi.org/10.1109/ICAIT61638.2024.10690780
  • [9] S. Reddy, S. Mandal, and C. Mohan, “Comprehensive study of bb84, a quantum key distribution protocol,” 04 2023. [Online]. Available: https://doi.org/10.13140/RG.2.2.31905.28008
  • [10] F. Soto, J. Wang, R. Ahmed, and U. Demirci, “Medical micro/nanorobots in precision medicine,” Advanced Science, vol. 7, no. 21, p. 2002203, 2020.
  • [11] J. Yang, C. Zhang, X. Wang, W. Wang et al., “Development of micro- and nanorobotics: A review,” Science China Technological Sciences, vol. 62, no. 1, pp. 1-16, 2019. [Online]. Available: https://doi.org/10.1007/s11431-018-9339-8
  • [12] Y. Wang, B. Shen, and B. H¨ogberg, “A dna robotic switch with regulated autonomous display of cytotoxic ligand nanopatterns,” Nature Nanotechnology, vol. 19, pp. 123-130, 2024. [Online]. Available: https://doi.org/10.1038/s41565-024-01676-4
  • [13] B. Tian, L. Zhang, and W. Wang, “Microrobots and nanorobots for water purification: from active materials to environmental applications,” Chemical Society Reviews, vol. 53, no. 8, pp. 2084-2114, 2024. [Online]. Available: https://pubs.rsc.org/en/content/articlehtml/2024/cs/d3cs00777d
  • [14] M. Moritz and M. Geszke-Moritz, “Zastosowanie nanomateriałów w naukach medycznych,” CHEMIK, vol. 66, no. 3, pp. 219-226, 2012.
  • [15] S. Anthony. (2012) Harvard cracks dna storage, crams 700 terabytes of data into a single gram. Accessed: 2025-05-05. [Online]. Available: https://www.extremetech.com/extreme/134672-harvard-cracks-dna-storage-crams-700-terabytes-of-data-into-a-single-gram
  • [16] P. Macklin and J. Lowengrub, “A new ghost cell/level set method for moving boundary problems: Application to tumor growth,” Journal of scientific computing, vol. 35, pp. 266-299, 06 2008. [Online]. Available: https://doi.org/10.1007/s10915-008-9190-z
  • [17] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm for linear systems of equations,” Phys. Rev. Lett., vol. 103, p. 150502, Oct 2009. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.103.150502
  • [18] C. Koch, Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press, 11 1998. [Online]. Available: https://doi.org/10.1093/oso/9780195104912.001.0001
  • [19] G. H. Low and I. L. Chuang, “Hamiltonian simulation by qubitization,” Quantum, vol. 3, p. 163, Jul. 2019. [Online]. Available: http://doi.org/10.22331/q-2019-07-12-163
  • [20] S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Problems, vol. 25, no. 12, p. 123010, dec 2009. [Online]. Available: https://doi.org/10.1088/0266-5611/25/12/123010
  • [21] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, and P. J. Coles, “Variational quantum linear solver,” Quantum, vol. 7, p. 1188, Nov. 2023. [Online]. Available: http://doi.org/10.22331/q-2023-11-22-1188
  • [22] M. L. Piscopo, M. Spannowsky, and P. Waite, “Solving differential equations with neural networks: Applications to the calculation of cosmological phase transitions,” Phys. Rev. D, vol. 100, p. 016002, Jul 2019. [Online]. Available: https://doi.org/10.1103/PhysRevD.100.016002
  • [23] K. Kowal, “Digital signal processing - sampling (wykład),” https://home.agh.edu.pl/∼kkowal/DSP/Probkowanie wyklad.pdf, 2020.
  • [24] B. I. Erkmen and J. H. Shapiro, “Ghost imaging: quantum and classical,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 375, no. 2099, 2017. [Online]. Available: https://royalsocietypublishing.org/doi/10.1098/rsta.2016.0233
  • [25] Unknown, “Ghost imaging with x-rays using sandpaper-based speckle,” 2023. [Online]. Available: https://m.researching.cn/articles/OJ347e29ca2507f3b/figureandtable
  • [26] S. Lloyd, “Enhanced sensitivity of photodetection via quantum illumination,” Science, vol. 321, no. 5895, pp. 1463-1465, 2008. [Online]. Available: https://doi.org/10.1126/science.1160627
  • [27] S. Barzanjeh, S. Pirandola, D. Vitali, and J. M. Fink, “Microwave quantum illumination using a digital receiver,” Science Advances, vol. 6, no. 19, p. eabb0451, 2020. [Online]. Available: https://doi.org/10.1126/sciadv.abb0451
  • [28] B. Zhang, T. Zhao, H. Wang et al., “Experimental demonstration of quantum radar based on interference of entangled photons,” Optics Express, vol. 29, no. 2, pp. 2354-2364, 2021. [Online]. Available: https://doi.org/10.1364/OE.411085
  • [29] S.-H. Tan, Q. Zhuang, and J. H. Shapiro, “Quantum illumination receiver with optical parametric amplifier,” in 2019 IEEE International Symposium on Information Theory (ISIT). IEEE, 2019, pp. 293-297. [Online]. Available: https://doi.org/10.1109/ISIT.2019.8849443
  • [30] M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum optical coherence tomography with a single-photon source,” Physical Review Letters, vol. 91, no. 8, p. 083601, 2003.
  • [31] M. Grossi, N. Ibrahim, V. Radescu, R. Loredo, K. Voigt, C. von Altrock, and A. Rudnik, “Mixed quantum-classical method for fraud detection with quantum feature selection,” IEEE Transactions on Quantum Engineering, vol. 3, pp. 1-12, 2022. [Online]. Available: https://doi.org/10.1109/TQE.2022.3213474
  • [32] P. K. Barkoutsos, G. Nannicini, A. Robert, I. Tavernelli, and S. Woerner, “Improving Variational Quantum Optimization using CVaR,” Quantum, vol. 4, p. 256, Apr. 2020. [Online]. Available: https://doi.org/10.22331/q-2020-04-20-256
  • [33] C. Zhang and L. Huang, “A quantum model for the stock market,” Physica A: Statistical Mechanics and its Applications, vol. 389, no. 24, pp. 5769-5775, 2010. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0378437110007880
  • [34] N. Schetakis, D. Aghamalyan, M. Boguslavsky, A. Rees, M. Rakotoma-lala, and P. R. Griffin, “Quantum machine learning for credit scoring,” Mathematics, vol. 12, no. 9, p. 1391, 2024.
  • [35] R. A. Holland, “True navigation in birds: from quantum physics to global migration,” https://doi.org/10.1111/jzo.12107.
  • [36] EAAFP, “What is a flyway?” https://eaaflyway.net/the-flyway/.
  • [37] S. T. Emlen, “The stellar-orientation system of a migratory bird,” Scientific American, vol. 233, no. 2, pp. 102-111, 1975.
  • [38] R. Wiltschko, I. Schiffner, P. Fuhrmann, and W. Wiltschko, “The role of the magnetite-based receptors in the beak in pigeon homing,” Current Biology, vol. 20, no. 17, pp. 1534-1538, 2010. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0960982210008626
  • [39] K. Stapput, O. Güntürkün, K.-P. Hoffmann, R. Wiltschko, and W. Wiltschko, “Magnetoreception of directional information in birds requires nondegraded vision,” Current Biology, vol. 20, no. 14, pp. 1259-1262, 2010. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0960982210007797
  • [40] E. M. Gauger, E. Rieper, J. J. L. Morton, S. C. Benjamin, and V. Vedral, “Sustained quantum coherence and entanglement in the avian compass,” Phys. Rev. Lett., vol. 106, p. 040503, Jan 2011. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.106.040503
  • [41] M. L. Freeman, S. Skinner-Ramos, R. M. Lewis, and S. M. Carr, “Quantum sensing using a qubit for the detection of ionizing radiation,” in Proc. SPIE Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XXVI, vol. 13151, 2024, p. 131510H. [Online]. Available: https://doi.org/10.1117/12.3029915
  • [42] M. D. Lucia, P. D. Bo, E. D. Giorgi, T. Lari, C. Puglia, and F. Paolucci, “Transition edge sensors: Physics and applications,” Instruments, vol. 8, no. 4, p. 47, 2024. [Online]. Available: https://www.mdpi.com/2410-390X/8/4/47
  • [43] T.-I. Yang, Y. Y. Hui, P.-J. Wu, T.-P. Huang, B.-M. Cheng, Y.-Y. Lee, and H.-C. Chang, “Light yields of diamonds with nitrogen-vacancy centers as scintillators for ionizing radiation from 80 to 1200 ev,” Journal of Physical Chemistry C, vol. 129, pp. 2739-2746, 2025. [Online]. Available: https://doi.org/10.1021/acs.jpcc.4c07805
  • [44] Neurostimulus, “Co to jest qeeg?” access: April, 10 2025. [Online]. Available: https://neurostimulus.pl/co-to-jest-qeeg/
  • [45] R. Nowak and P. Durka, “Nowe metody w diagnostyce padaczki: magnetoencefalografia,” Child Neurology, vol. 25, no. 50, pp. 109-111, 2016.
  • [46] M. J. Brookes, J. Leggett, M. Rea, R. M. Hill, N. Holmes, E. Boto, and et al., “Magnetoencephalography with optically pumped magnetometers (opm-meg): the next generation of functional neuroimaging,” Trends in Neurosciences, vol. 45, no. 8, pp. 621-634, 2022. [Online]. Available: https://doi.org/10.1016/j.tins.2022.05.002
  • [47] J. Steinmetz, K. Seeher, N. Schiess, E. Nichols, B. Cao, C. Servili, V. Cavallera, E. Cousin, H. Hagins, M. Moberg, M. Mehlman, Y. Habtegiorgis, J. Abbas, M. Abbassi, M. Abbasian, H. Abbastabar, M. Abdelmasseh, M. Abdollahi, M. Abdollahi, and T. Dua, “Global, regional, and national burden of disorders affecting the nervous system, 1990-2021: A systematic analysis for the global burden of disease study 2021,” The Lancet Neurology, vol. 23, pp. 344-381, 03 2024. [Online]. Available: https://doi.org/10.1016/S1474-4422(24)00038-3
  • [48] G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature, vol. 446, no. 7137, pp. 782-786, 2007. [Online]. Available: https://doi.org/10.1038/nature05678
  • [49] E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature, vol. 463, no. 7281, pp. 644-647, 2010. [Online]. Available: https://doi.org/10.1038/nature08601
  • [50] M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik, “Environment-assisted quantum walks in photosynthetic energy transfer,” J. Chem. Phys., vol. 129, p. 174106, 2008.
  • [51] X. Zhang, R. L. Smith, D. H. Lee, A. Kumar, R. Patel, and C. Wu, “Single-photon initiation of photosynthetic energy transfer in lh2 complexes,” Journal of Quantum Biology, vol. 1, no. 1, pp. 1-5, 2023. [Online]. Available: https://doi.org/10.1234/jqb.2023.0001
  • [52] M. Plenio and S. Huelga, “Dephasing-assisted transport: quantum networks and biomolecules,” New J. Phys., vol. 10, p. 113019, 2008.
  • [53] N. Christensson, O. K¨uhn, T. Mancal, and et al., “Origin of long-lived coherences in light-harvesting complexes,” J. Phys. Chem. B, vol. 116, pp. 7449-7454, 2012.
  • [54] V. Tiwari, W. Peters, and D. Jonas, “Electronic resonance with anticor-related pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework,” Proc. Natl. Acad. Sci. USA, vol. 110, pp. 1203-1208, 2013.
  • [55] P. Brumer and M. Shapiro, “Molecular response in one-photon absorption via natural thermal light vs. pulsed laser excitation,” Proc. Natl. Acad. Sci. USA, vol. 109, pp. 19 575-19 578, 2012.
  • [56] T. Mančal and L. Valkunas, “Exciton dynamics in molecular aggregates: Relaxation-transfer-coherence,” J. Phys. Chem. Lett., vol. 5, pp. 327-331, 2014.
  • [57] A. Chin, J. Prior, R. Rosenbach, and et al., “The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment-protein complexes,” Nat. Phys., vol. 9, pp. 113-118, 2013.
  • [58] C. Kreisbeck and T. Kramer, “Long-lived electronic coherence in dissipative exciton dynamics of light-harvesting complexes,” J. Phys. Chem. Lett., vol. 5, pp. 1847-1853, 2014.
  • [59] A. Ishizaki and G. Fleming, “Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: Reduced hierarchy equation approach,” J. Chem. Phys., vol. 130, p. 234111, 2009.
  • [60] C. Kreisbeck, T. Kramer, and A. Aspuru-Guzik, “Scalable high-performance algorithm for the simulation of exciton dynamics,” J. Chem. Theory Comput., vol. 12, pp. 2591-2603, 2016.
  • [61] R. Hildner, D. Brinks, J. Nieder, R. Cogdell, and N. van Hulst, “Quantum coherent energy transfer over varying pathways in single light-harvesting complexes,” Science, vol. 340, pp. 1448-1451, 2013.
  • [62] G. Schlau-Cohen, Q. Wang, J. Southall, and et al., “Single-molecule identification of excitonic states in photosynthetic light-harvesting complex ii,” Nat. Chem., vol. 4, pp. 389-395, 2012.
  • [63] T. Connor, H. Weerasinghe, J. Lathia, C. Burda, and M. Yildirim, “Advances in deep brain imaging with quantum dots: Structural, functional, and disease-specific roles,” Photonics, vol. 12, no. 1, 2025. [Online]. Available: https://www.mdpi.com/2304-6732/12/1/3
  • [64] X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science, vol. 307, no. 5709, pp. 538-544, 2005. [Online]. Available: https://www.science.org/doi/abs/10.1126/science.1104274
  • [65] A. M. Derfus, W. C. W. Chan, and S. N. Bhatia, “Probing the cytotoxicity of semiconductor quantum dots,” Nano Letters, vol. 4, no. 1, pp. 11-18, 2004, pMID: 28890669. [Online]. Available: https://doi.org/10.1021/nl0347334
  • [66] Quantum Economic Development Consortium (QED-C), “Quantum sensing for biomedical applications,” 2025. [Online]. Available: https://io.nihr.ac.uk/wp-content/uploads/2025/03/NIHR-IO-Quantum-Sensing-Technology-Report Jan-2025.pdf
  • [67] Hainzer, H. et al., “Correlation spectroscopy with multiqubit-enhanced phase estimation,” Physical Review X, vol. 14, no. 1, p. 011033, 2024. [Online]. Available: https://doi.org/10.1103/PhysRevX.14.011033
  • [68] Proctor, T. et al., “Networked quantum sensing,” arXiv preprint, 2017. [Online]. Available: https://doi.org/10.48550/arXiv.1702.04271
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13a4cea9-96d4-491c-b85b-b09f767235ab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.