PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analiza zależności między zawartością wody w roślinach zmierzoną w terenie a teledetekcyjnymi wskaźnikami roślinności

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Analysis of the relationships between vegetation water content obtained from field measurements and vegetation indices
Języki publikacji
PL
Abstrakty
EN
Monitoring the plant moisture has a significant role in geographical research. It may be used, among the others, for climate modelling, agricultural predicting, rational water management, drought monitoring and determining vulnerability to the occurrence of the fire. Traditional methods, based on field measurements, are the most accurate, but also time-consuming. Therefore these methods can be applied only in a limited area. In order to explore bigger areas remote sensing methods are useful. To analyse plant condition and water content vegetation indices can be used. Their calculations are based on the reflectance in different bands. Despite many studies conducted on the development of remote sensing indices, still there is a need for verification of their accuracy and usefulness by comparing the results obtained through remote sensing tools with the results of field measurements. In this paper three indices are used: Moisture Stress Index (MSI), Normalized Difference Infrared Index (NDII) and transformation Tasseled Cap (the Wetness band). The aim of this study was to compare the value of vegetation indices calculated using images from Landsat 5 Thematic Mapper with the results of field measurement from five test areas of different type of land cover: cereal crops, non-cereal crops, forests, meadows and pastures. Research was carried out in province Ontario (Canada) and consisted of two stages. The first stage was the fi eld measurements, where the specified number of plant samples was collected and water content was calculated. The second stage consisted of the preparation of relevant satellite images (atmospheric correction and making the mosaic) and the calculation of vegetation indices. The study has shown, that statistical relationships between data sets obtained through remote sensing indices and calculated on the basis of field measurements are diverse for different indices. MSI and NDII values are significantly correlated with the water content in plants (R= -0.62 and 0.56, respectively). The correlation of TCW was rated as moderate (R=0.30). Spatial distribution of water content based on maps created using NDII and MSI is similar. It was noticed that TC Wetness transformation overestimates water content in cereal plants (smaller water content) and underestimates it in natural green plant ecosystems, which generally have higher water content. As a result, the range of water content values obtained from TCW is more narrow (dominates the class of 60-70% water in plants) than the range of values calculated using NDII and MSI. Both indices have more uniform distribution dominated by the classes of moderate water content (50-60%), rather wet plants (60-70%) and very wet plants (70-80%). Each index is characterized by different distribution of the water content. In general values calculated on the basis of NDII and MSI are higher than calculated using TCW. In order to perform more accurate analysis between values calculated using satellite images and the results of field measurements, the values of particular types of land cover should be compared.
Rocznik
Tom
Strony
43--57
Opis fizyczny
Bibliogr. 53 poz., rys., tab., wykr., zdj.
Twórcy
  • Wydział Geografii i Studiów Regionalnych, Uniwersytet Warszawski
autor
  • Wydział Geografii i Studiów Regionalnych, Uniwersytet Warszawski
  • Wydział Geografii i Studiów Regionalnych, Uniwersytet Warszawski
  • Wydział Geografii i Studiów Regionalnych, Uniwersytet Warszawski
autor
  • Wydział Geografii i Studiów Regionalnych, Uniwersytet Warszawski
autor
  • Wydział Geografii i Studiów Regionalnych, Uniwersytet Warszawski
  • Wydział Geografii i Studiów Regionalnych, Uniwersytet Warszawski
  • Wydział Geografii i Studiów Regionalnych, Uniwersytet Warszawski
Bibliografia
  • 1. Ceccato P., Flasse S., Tarantola S., Jacquemoud S., Grégoire J.-M., 2001, Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sensing of Environment, vol. 77, str. 22–33.
  • 2. Chen D., Huang J. Jackson T.J., 2005, Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near- and short-wave infrared bands. Remote Sensing of Environment, vol. 98, str. 225–236.
  • 3. Claudio H.C., Cheng Y., Fuentes D.A., Gamon J.A., Luo H., Oechel W., Qiu H.-L., Rahman A.F., Sims D.A., 2006, Monitoring drought effects on vegetation water content and fluxes in chaparral with the 970 nm water band index. Remote Sensing of Environment, vol. 103, str. 304–311.
  • 4. Cohen W.B., Spies T.A., Fiorella M., 1995, Estimating the age and structure of forests in a multi-ownership landscape of western Oregon, U.S.A. International Journal of Remote Sensing, vol. 16, str. 721–746.
  • 5. Cohen W.B., Spies T.A., 1992, Estimating structural attributes of Douglas-Fir/Western Hemlock forest stands from Landsat and SPOT imagery. Remote Sensing of Environment, vol. 41, str. 1–17.
  • 6. Collins J.B., Woodcock C.E., 1996, An assessment of several linear change detection techniques for mapping forest mortality using multitemporal Landsat TM data. Remote Sensing of Environment, vol. 56, str. 66–77.
  • 7. Crist E.P., Kauh R.J., 1986, The tasseled cap de-mystified. Photogrammetric Engineering and Remote Sensing, vol. 52, str. 81–86.
  • 8. Crist E.P., 1985, A TM Tasseled Cap equivalent transformation for reflectance factor data. Remote Sensing of Environment, vol. 17, 301–306.
  • 9. Crist E.P., Cicone R.C., 1984, A physically-based transformation of Thematic Mapper data—the TM Tasseled Cap. IEEE Transactions on Geoscience and Remote Sensing, vol. 22, str. 256–263.
  • 10. Dasgupta S., Qu J. J., Hao X., Bhoi S., 2006, Evaluating remotely sensed live fuel moisture estimations for fire behavior predictions in Georgia, USA. Remote Sensing of Environment, vol. 108, str. 138–150.
  • 11. Dąbrowska-Zielińska K., Ciołkosz A., Budzyńska-Gruszczyńska M., Kowalik W., 2006, Application of microwave and optical data for monitoring of soil moisture and crop parameters in Poland. Proc. of the 26th EARSeL Symposium, Warsaw, 29.05-02.06.2006 “New Developments and Challenges in Remote Sensing”, str. 25–37.
  • 12. Dąbrowska-Zielińska K., Gruszczyńska M., Kogan F., Kowalik W., Malek I., Lewinski S., 2006, Application of various satellite derived information for drought detection and calculation of water balance. Proc. SPIE 6412, 64120W, http://dx.doi.org/10.1117/12.693754.
  • 13. Dąbrowska-Zielińska K., Kowalik W., Budzyńska M., Guerra A., 2009, Detection of water defi cit using Optical Data – case study Poland. Proceedings of 2009 IEEE International Geoscience and Remote Sensing Symposium, 12–17 July 2009, str. 470–473.
  • 14. De Beurs K.M., Townsend P.A., 2008, Estimating the effect of gypsy moth defoliation using MODIS. Remote Sensing of Environment, vol. 112, str. 3983–3990.
  • 15. Deng Y., Chen X., Chuvieco E., Warner T., Wilson J.P., 2007, Multi-scale linkages between topographic attributes and vegetation indices in a mountainous landscape. Remote Sensing of Environment, vol. 111, str. 122–134.
  • 16. Doraiswamy P.C., Hatfi eld J.L., Jackson T.J., Akhmedov B., Prueger J., Stern A., 2004, Crop condition and yield simulations using Landsat and MODIS. Remote Sensing of Environment, vol. 92, str. 548–559.
  • 17. Fiorella M., Ripple W.J., 1993, Determining successional stage of temperate coniferous forests with Landsat satellite data. Photogrammetric Engineering and Remote Sensing, vol. 59, str. 239–246.
  • 18. Gamon J.A., Lee L.-F., Qiu H.-L., Davis S., Roberts D.A., Ustin S.L., 1998, A multi-scale sampling strategy for detecting physiologically significant signals in AWRIS imagery [w:] Summaries of the Seventh Annual JPL Earth Science Workshop January 12–16, 1998. Pasadena, CA, JPL Publication 97–21, vol. 1, str. 111–120.
  • 19. Gamon J.A., Qiu H.-L., 1999, Ecological applications of remote sensing at multiple scales. w: Pugnaire F.I., Valladares [red.] Handbook of Functional Plant Ecology, Marcel Dekker, Inc. New York, str. 805–846.
  • 20. Gao B.-C., 1996, NDWI – A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, vol. 58, str. 257–266.
  • 21. Hall F.G., Shimabukuro Y.E., Huemmrich K.F., 1995. Remote sensing of forest biophysical structure using mixture decomposition and geometric reflectance models. Ecological Applications, vol. 5, str. 993–1013.
  • 22. Hardisky M.A., Klemas V., Smart R.M., 1983, The influences of soil salinity, growth form, and leaf moisture on the spectral reflectance of Spartina alterniflora canopies. Photogrammetric Engineering and Remote Sensing, vol. 49, str. 77–84.
  • 23. Harris A., Bryat R.G., Baird A.J., 2005, Detecting near-surface moisture stress in Sphagnum spp. Remote Sensing of Environment vol. 97, str. 371–381.
  • 24. Harris A., Bryant R.G., Baird A.J., 2005, Mapping the effects of water stress on Sphagnum: Preliminary observations using airborne remote sensing. Remote Sensing of Environment, vol. 100, str. 363–378.
  • 25. Healey S., Cohen W., Zhiqiang Y., Krankina O., 2005, Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection. International Journal of Remote Sensing, vol. 97, str. 301–310.
  • 26. Heim R.R., Lawrimore J.H., Wuertz D.B., Waple A.M., Wallis T.W.R., 2003, The REDTI and MSI: two new national climate impact indices. Journal of Applied Meteorology, vol. 42, str. 1435 –1442.
  • 27. Huang J., Chen D., Cosh M.H., 2009, Sub-pixel reflectance unmixing in estimating vegetation water content and dry biomass of corn and soybeans cropland using normalized difference water index (NDWI) from satellites. International Journal of Remote Sensing, vol. 30, str. 2075–2104.
  • 28. Hunt E.R., Rock B.N., 1989, Detection of changes in leaf water content using near- and middle-infrared reflectances. Remote Sensing of Environment, vol. 30, str. 43–54.
  • 29. Hunt E.R., Rock B.N., Nobel P.S., 1987, Measurement of leaf relative water content by infrared reflectance. Remote Sensing of Environment, vol. 22, str. 429–435.
  • 30. Hunt Jr. E.R., Li L., Yilmaz M.T., Jackson T.J., 2011, Comparison of vegetation water contents derived from short wave infrared and passive-microwave sensors over central Iowa. Remote Sensing of Environment, vol. 115, str. 2376–2383.
  • 31. Jackson T.J., Chen D., Cosh M., Li F., Anderson M., Walthall C., Doriaswamy P., Hunt E.R., 2003, Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sensing of Environment, vol. 92, str. 475–482.
  • 32. Jarocińska A., Nasiłowska S., 2009, Zmienność wilgotność w dolinie górnej Narwii w okresie 20 lat na podstawie transformacji Tasseled Cap i wskaźników wilgotności. Teledetekcja Środowiska, vol. 41, str. 51–57.
  • 33. Jażdżewska I., 2003, Statystyka dla geografów. Wydawnictwa Uniwersytetu Łódzkiego, Łódź, str. 161.
  • 34. Jensen J.R., 1983, Biophysical Remote sensing – Review Article. Annals of the Associations of American Geographers, vol. 73, str. 111–132.
  • 35. Kauth, R. J. and Thomas, G. S.,1976, The Tasselled Cap – A Graphic Description of the Spectral-Temporal Development of Agricultural Crops as Seen by LANDSAT.
  • 36. LARS Symposia. Paper 159, http://docs.lib.purdue.edu/lars_symp/159/.
  • 37. Lasaponara R., Telesca L., 2006, Decadal variability in multitemporal satellite SPOT-VEGETATION NDII data. International Journal of Remote Sensing, vol. 27, str. 4685–4692.
  • 38. Maki M., Ishiahra M., Tamura M., 2004, Estimation of leaf water status to monitor the risk of forest fires by using remotely sensed data. Remote Sensing of Environment, vol. 90, str. 441–450.
  • 39. Martyniak L., Dąbrowska-Zielińska K., Szymczyk R., Gruszczyńska M., 2007, Validation of satellite-derived soil-vegetation indices for prognosis of spring cereals yield reduction under drought conditions – Case study from central-western Poland. Advances in Space Research, vol. 39, str. 67–72.
  • 40. Miatkowski Z., Turbiak S., Kowalik W., Sołtysik A., Lewiński J., 2006, Przydatność zdjęć satelitarnych Landsat TM do identyfikacji intensywnie odwodnionych siedlisk hydrogenicznych w rejonie KWB Bełchatów. Woda – Środowisko – Obszary Wiejskie Rozprawy naukowe i monografie, nr 16.
  • 41. Peñuelas J., Gamon J. A., Fredeen A.L., Merino J., Field C.B., 1994, Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sensing of Environment, vol. 48, str. 135–146.
  • 42. Peñuelas J., Piñol J., Ogaya R., Filella I., 1997, Estimation of plant water concentration by the reflctance Water Index WI (R900/R970). International Journal of Remote Sensing, vol. 18, str. 2869–2875.
  • 43. Peñuelas, J., Filella I., Biel C., Serrano L., Savé R., 1993, The reflectance at the 950–970 nm region as an indicator of plant water status. International Journal of Remote Sensing, vol. 14, str. 1887–1905.
  • 44. Rock B.N., Williams D.L., Vogehnann J.E.,1985, Field and airborne spectral characterization of suspected acid deposition damage in red spruce (Picea rubens) from Vermont. Machine Processing of Remotely Sensed Data Symposium, Purdue University, Lafayette, IN, str. 71–81.
  • 45. Scott J.W., Moore L.R., Harris W.M., Reed M.D., 2003, Using the Landsat 7 Enhanced Thematic Mapper Tasseled Cap transformation to extract shoreline. U.S. Geological Survey, Open-File Report OF 03–272.
  • 46. Ustin S.L., Roberts D.A., Gamon J.A., Asner G.P., Green R.O., 2004, Using Imaging Spectroscopy to Study Ecosystem Processes and Properties. Bio science, vol. 54, str. 523–534.
  • 47. Vogelmann J.E., Moss D.M., 1993, Spectral reflectance measurements in the genus Sphagnum. Remote Sensing of Environment, vol. 45, str. 273–279.
  • 48. Vogelmann J.E., Rock B.N., 1986, Assessing forest decline in coniferous forests of Vermont using NS-001 Thematic Mapper Simulator data. International Journal of Remote Sensing, vol. 7, str. 1303–1321.
  • 49. Wang W., Qu J.J., Hao X., Liu Y., Stanturf J.A., 2010, Posthurricane forest damage assessment using satellite remote sensing. Agricultural and Forest Meteorology, vol. 150, str. 122–132.
  • 50. Xu C., Zhu X., Pan Y., Zhu W., Lei Y., 2008, Comparison study on NDII and NDVI based on rice extraction from rice and ginkgo mixed area. IGARSS, vol. 3, str. 696–699.
  • 51. Yebra M., Chuvieco E., Riaño D., 2008, Estimation of live fuel moisture content from MODIS images for fire risk assessment. Agricultural and Forest Meteorology, vol. 148, str. 523–536.
  • 52. Yilmaz M.T., Hunt Jr. E.R., Jackson T.J., 2007, Remote sensing of vegetation water content from equivalent water thickness using satellite imagery. Remote Sensing of Environment, vol. 112, str. 2514–2522.
  • 53. Zagajewski B., Jarocińska A., Olesiuk D., 2010, Metody i techniki badań geoinformatycznych. Warszawa, str. 48–53.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13a2f62f-476d-4a47-adee-37751f1da26f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.