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Abstract. Let G be a graph with vertex set V(G). If u € V(G), then NJu] is the closed
neighborhood of u. An outer-independent double Italian dominating function (OIDIDF)
on a graph @ is a function f : V(G) — {0,1,2,3} such that if f(v) € {0,1} for a vertex
v € V(G), then ZmeN[v] f(z) > 3, and the set {u € V(G) : f(u) = 0} is independent. The
weight of an OIDIDF f is the sum Zve\/(c) it
domination number vo;q4r(G) equals the minimum weight of an OIDIDF on G. In this
paper we present Nordhaus—Gaddum type bounds on the outer-independent double Italian
domination number which improved corresponding results given in [F. Azvin, N. Jafari Rad,
L. Volkmann, Bounds on the outer-independent double Italian domination number, Commun.
Comb. Optim. 6 (2021), 123-136]. Furthermore, we determine the outer-independent double
Italian domination number of some families of graphs.
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1. INTRODUCTION
For definitions and notations not given here we refer to [9]. We consider simple graphs

G with vertex set V = V(G) and edge set E = E(G). The order of G isn = n(G) = |V|.
The open neighborhood of a vertex v is the set

N(v) = Ng(v) ={u e V(G) | uv € E(G)}
and its closed neighborhood is the set

N[v] = Ng[v] = N(v) U {v}.
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The degree of vertex v € V is d(v) = dg(v) = |N(v)|. The mazimum degree and
minimum degree of G are denoted by A = A(G) and § = §(G), respectively. The
complement G of a graph G is that graph with vertex set V(G) such that two vertices
are adjacent in G if and only if these vertices are not adjacent in G. If D is a nonempty
subset of the vertex set V(G) of a graph G, then the subgraph G[D] of G induced by
D is the graph having vertex set D and whose edge set consists of those edges of G
incident with two vertices of D. A leaf is a vertex of degree one, and its neighbor is
called a support vertexr. An edge adjacent to a leaf is called a pendant edge.

A set S of vertices is independent if no two vertices in S are adjacent. The maxi-
mum cardinality of an independent set in G is called the independence number o(G)
of G. A wertex cover of a graph G is a set S of vertices such that each edge of G has
at least one end point in S. The minimum cardinality of a vertex cover is denoted
by B(G). If §(G) > 1, then the identity a(G) + B(G) = n(G), due to Gallai [8],
is well-known. We write P, for the path of order n, C,, for the cycle of length n and
K, for the complete graph of order n. The complete t-partite graph Ky, n,,.. n, has
n=mni+ng+...+n, vertices and V(Kp, ny....n,) = S1US2U...US,, where |S;| = n;
for 1 <i <t, {u,v} CS; implies u and v are not adjacent, and u € S; and v € S;
with 4 < j implies v and v are adjacent, and, specifically, Ky ,—1 is called a star.
If we add two disjoint pendant edges to a cycle of length three, then we obtain the
bull graph, denoted by Bs.

Cockayne, Dreyer, S.M. Hedetniemi and S.T. Hedetniemi [7] introduced the concept
of Roman domination in graphs, and since then a lot of related variations and
generalizations have been studied (see for example, [3-6]).

Mojdeh and Volkmann [10] considered the following variant of Roman
domination. A double Italian dominating function (DIDF) on a graph G is a function
f:V(G) — {0,1,2,3} such that if f(v) € {0,1} for a vertex v € V(G), then
> wen f(@) = 3. The weight of a DIDF f is the sum w(f) = >, ey f(v),
and the minimum weight of a DIDF in a graph G is the double Italian domina-
tion number, denoted by v47(G). A DIDF f on G of weight v47(G) is called a
var (G)-function. For a DIDF f, let (Vp, Vi, Va, V3) be the ordered partition of V(G),
where V; = {v € V(G) : f(v) =i} for i = 0,1,2,3. There is a 1-1 correspondence
between the function f and the ordered partition (Vo, Vi, Vs, V3). So we will write
f = (Vo, V1, Vo, V3). This concept was further studied in [1,12].

A double Italian dominating function f = (Vy, V1, Vo, V3) on a graph G is called
in [2] an outer-independent double Italian dominating function (OIDIDF) if V; is an
independent set. The outer-independent double Italian domination number Yoiar(G)
equals the minimum weight of an OIDIDF on G. An OIDIDF f on G of weight 7,41 (G)
is called a o7 (G)-function. Clearly, v41(G) < Yoiar (G).

In this paper we present Nordhaus-Gaddum type results on the outer-independent
double Italian domination number which improved corresponding results given in [2].
Furthermore, we give different bounds, and we determine the outer-independent double
Italian domination number of some special graphs.

We make use of the following results.
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Proposition 1.1 ([10]). If G is a graph of order n > 2 then vqr(G) > 3, with equality
if and only if A(G) =n — 1.
(

Proposition 1.2 ([2]). Let G be a graph of order n. If §(G) > 1, then voiqr(G) < 22,
with equality if and only if G = pKy for an integer p > 1.

The equality part in Proposition 1.2 can be found in the proof of Theorem 5 in [2].
Proposition 1.3 ([2]). If G is a graph of order n with §(G) > 2, then voia1(G) < n.
Proposition 1.4 ([2]). If C,, is a cycle of length n, then Yoiar(Cp) = n.
Proposition 1.5 ([2]). If P, is a path of order n > 4, then voiar(Pn) = n + 1.

2. BOUNDS

Theorem 2.1. Let G be a graph of order n with §(G) > 1.

(1) ([2]) Then B(G) < 70iar (G) < 3B(G).

(2) ([2]) If 6(G) = 2, then Yoiar(G) < 2B(G).

(3) If 6(G) > 2, and G is not bipartite, then Yoiq1(G) < 28(G) —

(4) Let 6(G) > 3, and let S be a vertex cover of minimum cardinality. If §(G[S]) > 2,
then v0ia1(G) = B(QG).

Proof. Let S be a vertex cover of minimum cardinality. Then V(G) \ S is a maximum
independent set.

Item (1). If we define the function f by f(x) = 3 for x € S and f(z) = 0
for x € V(G)\ S, then f is an OIDIDF on G of weight 33(G). Therefore
Yoiar (G) < 3B(G), and the upper bound is proved. For the lower bound assume
that g is a 747 (G)-function. Then g(z) = 0 for at most a(G) = n — B(G) vertices x,
and therefore 7,41 (G) = w(g) > B(G).

Ttem (2). We define f by f(z) = 2 for x € S and f(z) = 0 for x € V(G) \ S.
Since §(G) > 2, we see that f is an OIDIDF on G of weight 25(G). Therefore
Yoiar (G) < 26(G).

Item (3). Since G is not bipartite and V(G) \ S is independent, the induced
subgraph G[S] contains an edge uv. Now define the function f by f(u) =1, f(z) =2
for x € S\ {u} and f(z) =0 for x € V(G) \ S. We deduce that f is an OIDIDF on G
of weight 28(G) — 1, and thus 7,41 (G) < 268(G) —

Ttem (4). Define f by f(z) =1 for z € S and f(z) =0 for x € V(G) \ S. Since
d(G) > 3 and §(G[S]) > 2, we observe that f is an OIDIDF on G of weight 8(G).
S0 Yoiar (G) < B(G), and Item (1) leads to veia1 (G) = B(G). O

Since S(K,) = n — 1 for the complete graph of order n > 2, the next corollary
follows from Theorem 2.1 (4) immediately.

Corollary 2.2. Ifn >4, then voiar(K,) =n — 1.

The next examples will demonstrate that Theorem 2.1 is sharp.
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Example 2.3.

(1) I Q = pKa, then 7oiar(Q) = 3p = 36(Q).

(2) Let @ be a graph of order ¢ with vertex set {vi,vs,...,vq}. If we add t; > 2
pendant edges to each vertex v; for 1 < i < ¢, then let H be the resulting graph.
Let g be an OIDIDF on H, and let a;1,a;.2,...,a; be the leaves adjacent to v;
for 1 < i < g. Then it is straightforward to verify that g(v;) + Z;’Zl g(a; ;) >3
for each 1 < i < q. Therefore v,;41(H) > 3¢ = 35(H). According to Theorem 2.1
(1), we obtain veq1(H) = 3¢ = 38(H). These examples show that Theorem 2.1
(1) is sharp.

(3) If Cyp is a cycle of even length, then it follows from Proposition 1.4 that
Yoidr (Cap) = 2p = 28(C4,), and thus Theorem 2.1 (2) is sharp.

(4) If Coptq is a cycle of odd length, then it follows from Proposition 1.4 that
Yoidl (Cop+1) = 2p + 1 = 23(Capy1) — 1, and thus Theorem 2.1 (3) is sharp.

Corollary 2.2 shows that Theorem 2.1 (4) is sharp.

Theorem 2.4. If G is a graph of order n > 2, then Vo141 (G) > 3, with equality if and
only ’LfG = Kl,n—l; G = K1717n_2 (n Z 3) or G = K171717n_3 (Tl Z 4)

Proof. Proposition 1.1 implies Yoiqr (G) > var(G) > 3. If G = K7 ,,1 is a star, then
define f by f(v) = 3 for the center v of the star and f(x) = 0 for x € V(G)\ {v}. Then
f is an OIDIDF on G of weight 3 and therefore 7,41 (G) < 3, and thus 7,47 (G) = 3.
If G=Kiq1,-2 with S; = {x1} and Sy = {z2}, then define f by f(z1) =2, f(z2) =1
and f(x) =0 for x € V(G) \ {z1,22}. Then f is an OIDIDF on G of weight 3 and
therefore Yuiq1(G) = 3. If G = K11,1,n—3 with S1 = {z1}, S2 = {22} and S3 = {z3},
then define f by f(z1) = f(z2) = f(z3) =1 and f(x) =0 for x € V(G) \ {x1, 22,23}
Then f is an OIDIDF on G of weight 3 and thus 7,47 (G) = 3.

Coversely, assume that 74,47 (G) = 3. Then there is a vertex v with value 3 such
that the remaining n — 1 vertices with value 0 are independent and adjacent to v, and
therefore G is a star; or there are two adjacent vertices u and v with value 2 and 1,
respectively, such that the remaining n — 2 vertices with value 0 are independent and
adjacent to u and v, and therefore G = Kj j ,_2; or there are three mutually adjacent
vertices u, v, w with value 1 such that the remaining n — 3 vertices with value 0 are
independent and adjacent to u,v and w, and therefore G = K1 1.1.,_3. O

sty

Theorem 2.4 implies Yoiqr(K1,1,n-2) = 3 = 28(K11n-2) — 1 (n > 3) and
Yoidl (K1,1,1,n—2) = 3 = B(K11,1,n—2) (n > 4). These are further examples which
show the sharpness of Theorem 2.1 (3) and (4).

3. COMPLETE ¢t-PARTITE GRAPHS

Theorem 3.1. Let G = Ky, », be the complete bipartite graph such that n; < ns.
(1) If n1 =1, then voiar (G) = 3.

(2) If na =2, then voia1(G) = 4.

(3) If ny > 3, then ’YoidI(G) =n1 + 2.
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Proof. Theorem 2.4 implies Item (1).

Ttem (2). It follows from Theorem 2.1 (2) that v,41(G) < 26(G) = 4. Since
Yoidr (G) > 4 according to Theorem 2.4, we deduce that 447 (G) = 4.

Item (3). If ny > 3, then let u € Sy. Define the function f by f(z) =1 for = € Sy,
f(u) =2and f(z) =0 for z € S3 \ {u}. Then f is an OIDIDF on G of weight ny + 2
and therefore 7,41 (G) < n1+2. If g is an OIDIDF on G, then we observe that g(z) = 0
for at most ng vertices. However, if g(z) = 0 for all x € Ss, then g(z) > 2 for all
x € S7 and therefore w(g) > 2n4. If g(z) > 2 for all z € Sy, then w(g) > 2ny > 2n;.
Next assume that g(z) > 1 for all € S and g(v) = 1 for at least one vertex v € Ss.
Then we observe that

w@)> S g@) (e —1) >3+ (ma—1) > ny +2.
€N [v]

Finally, we assume that g(v) = 0 for at least one vertex v € Sy. Then g(z) > 1 for all
vertices x € Sp. In addition, assume that g(x) > 1 for at least r > 1 vertices x € Ss.
If r > 2, then w(g) > ny + r, and if r = 1, then we observe that w(g) > ny + 2.
Altogether, we deduce that v,;qr(G) > 11 + 2 and 80 Yoiar (G) = ny1 + 2. O

Theorem 3.1 (2) yields Yoiar (K2 n—2) = 4 = 28(Ks2 n—2) (n > 4). This is a further
example which show the sharpness of Theorem 2.1 (2).

Theorem 3.2. Let G = Ky, ...,
thatt > 3 and nq1 <ng < ... < ng.

n, be the complete t-partite graph of order n such

) Ift >4 ort=3 and ny > 2, then Yoiar(G) = n — ny.
) Ift =3, n1 =1 and nay =1, then v,,41(G) = 3.
) Ift =3, n1 =1 and ny = 2, then v,a1(G) = 4.
) Ift =3, n1 =1 and ny > 3, then o101 (G) = na + 2.

Proof. Ttem (1).Ift > 4 ort =3 and ny > 2, then 6(G) > 3and S = S1USU...US; 1
is a minimum vertex cover of G such that §(G[S]) > 2. Therefore it follows from
Theorem 2.1 (4) that var(G) = B(G) = n — ny.

Theorem 2.4 implies Item (2).

Ttem (3). If t = 3, ny = 1 and ny = 2, then define the function f by f(z) = 2 for
x €85y, f(xr) =1for x € Sy and f(x) =0 for x € Ss. Then f is an OIDIDF on G of
weight 4 and therefore 7,47 (G) < 4. Since y;q1 (G) > 4 according to Theorem 2.4,
we deduce that Yeqar(G) = 4.

Item (4). If t = 3, ny = 1 and ny > 3, then define the function f by f(z) = 2 for
x €85, f(z) =1for z € Sy and f(x) =0 for x € S3. Then f is an OIDIDF on G of
weight ny + 2 and therefore v,;47(G) < ng + 2. If g is an OIDIDF on G, then g(x) =0
for at most ng vertices, and therefore w(g) > ny + 1. Next assume, without loss of
generality, that g(w) = 0 for at least one vertex w € S3. However, if g(z) = 0 for all
vertices x € S3, then g(x) =1 for all vertices € S; U S5 is not possible and therefore
w(g) > ng + 2. In addition, if f(x) > 1 for at least one vertex x € Sz, then we also
have w(g) > ny + 2. Consequently, Vo;q1(G) > 12 + 2 and 80 Yoiar (G) = ng +2. O
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4. NORDHAUS-GADDUM TYPE RESULTS

Results of Nordhaus-Gaddum type study the extreme values of the sum or product of
a parameter on a graph and its complement. In their classical paper [11], Nordhaus and
Gaddum discussed this problem for the chromatic number. We discuss this problem
for the outer-independent double Italian domination number.

Theorem 4.1 ([2]). Let G be a graph G of ordern > 3. Then Yoia1(G)+"oidr (G) < 3n,
with equality if and only if G € {Ks5, K3}.

Next we improve Theorem 4.1. In the following let K,, — e be the complete graph
minus an edge e.

Theorem 4.2. Let G & {K,,K,} be a graph G of order n > 5. Then
Yoid1 (G) + Yoiar (G) < 3n —3,
with equality if and only if

Gel{K,—eK,—eKi22,Ki22, Bs}.

Proof. First assume that §(G) > 1 and §(G) > 1. Assume next that §(G) = 1 or
§(G) =1, say §(G) = 1. Let dg(v) = 1 and let w be a neighbor of v in G. Then v is
in G adjacent to all vertices of V(G) \ {v,w}, and since §(G) > 1, w is in G adjacent
to a vertex u # v,w. If we define the function f by f(v) = f(w) = 2, f(u) =0
and f(x) = 1 for z € V(G) \ {u,v,w}, then f is an OIDIDF on G and therefore

Yoiar (G) < m + 1.

If 6(G) = 1, then we obtain analogously 7,47 (G) < n + 1 and therefore

Yoidl (G) + Yoiar (G) <n+14+n+1=2n+2<3n-—4

for n > 6. Let now n = 5. First we observe that G and G are connected and
A(G),A(G) = 3. Let w be a vertex with dg(w) = 3, let x,y, 2 be the neighbors of w
in G, and let u be the remaining vertex. If {z,y, z} is an independent set in G, then
the function f with f(w) =3, f(u) =2 and f(x) = f(y) = f(z) = 0 is an OIDIDF on
G of weight 5, and we deduce that

Yoidr (G) + Yoiar (G) <5+ 6 =11 = 3n — 4.

So assume, without loss of generality, that zy € E(G). If uz € E(G), then 6(G) = 1

implies uw,ur,uy € FE(G). Then the function f with f(u) = 3, f(2) = 2 and
f(@) = f(y) = f(w) =0 is an OIDIDF on G of weight 5, and we obtain

Yoidl (G) + Yoiar (G) < 6+5=11=3n —4.

If uz ¢ E(G), then assume, without loss of generality, that uz € E(G). If there is no
further edge in G, then G is the bull graph Bs and G is the bull graph too. It is easy
to see that

Yoidl (Bs) + Yoiar (Bs) = 6 + 6 = 12 = 3n — 3,
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as desired. If G contains a further edge, for example uy, then the function f defined
by f(z) =3, f(w) =2 and f(u) = f(z) = f(y) = 0 is an OIDIDF on G of weight 5,
and we have

Yoidl (G) + Yoiar (G) < 11 = 3n — 4.

If 6(G) > 2, then Proposition 1.3 leads to v,i47(G) < n, and we obtain according
to Proposition 1.2 that

— 3
Yoidl (G) + Yoiar (G) < ?n +n<3n-3

for n > 7 and so

'YoidI(G) + ’YoidI(G) <3n-—4
for n > 7. Let next n = 6. If G = 3K, then Theorem 3.2 (i) leads to

Yoid (G) + Yoid1 (G) = 9 + Yoidar (K2,2,2) =9+ 4 =13 =3n — 5.

If G # 3K>, then Proposition 1.2 implies

Yoid1 (G) 4+ Yoiar (G) < 846 =14 = 3n — 4.

If n = 5, then we distinguish two cases. If G is not connected, then G consists of two
components of order two and three, respectively. It follows that

Yoid1 (G) + Yoiar (G) <645 =11 =3n — 4.

If G is connected, then the condition §(G) > 2 yields to A(G) < 2 and thus G = Ps.
Now it follows from Proposition 1.5 that

Yoid1 (G) + Yoiar (G) <645 =11 =3n — 4.

Second assume that 6(G) > 2 and 6(G) > 2. According to Proposition 1.3, we
deduce that

Yoidl (G) + Yoiar (G) < 2n < 3n — 4.

Finally assume that §(G) = 0 or §(G) = 0, say §(G) = 0. Let I be the set of
isolated vertices of G, w € I and F = G — I. We deduce from Proposition 1.2 that

3n(F
Yoiar (G) < 2|I| + né )

:2|I|+2n(F)—? =2n— ——=

Since G # K, there exist two vertices u # w and v # w which are not adjacent
in G. Now we see that the function f with f(w) =3, f(u) = f(v) =0 and f(z) =1
for € V(G) \ {u,v,w} is an OIDIDF on G of weight n, and therefore 4,47 (G) < n.
If n(F) > 7, then it follows that

— F 7
Yoidl (G) + Yoiar (G) < 2n — % +n<3n— 3

and thus ;41 (G) + Yoiar (G) < 3n — 4.
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Let now n(F) = 2. Then G = K,, — e, and Theorem 2.1 (4) implies
Yoiar (G) = B(G) =n — 2.
Since Yoiar (G) = 2n — 1, we obtain
Yoidl (G) + Yoiar (G) =2n—14+n—2=3n—3,

as desired.
If n(F) = 3, then F = P; or F' = C5. In both cases it is easy to see that

Yoid (G) 4 Yoiar (G) < 3n — 4.
Next let n(F) = 4. Assume that F' = 2K5. If n = 5, then 7oia1(G) =8, G = K1 22

and therefore it follows by Theorem 3.2 (3) that v,;47(G) = 4. This leads to

Yoidl (G) + Yoiar (G) = 12 = 3n — 3,

as desired. If n > 6, then 7,ar(G) = 2n — 2 and by Theorem 3.2 (i) we have

Yoidr (G) = n — 2 and so

Yoid1 (G) + Yoiar (G) = 2n — 4.

If F # 2K5, then F is connected. If §(F') > 2, then Proposition 1.3 implies voiqr (F') < 4
and it follows that

Yoidl (G) + Yoiar (G) <2(n —4)+4+n=3n—4.

If §(F) = 1, then let u be a vertex of degree 1, v be a neighbor of u and a # u be
a neighbor of v in F. If v has a further neighbor b # u, a, then the function f with
f(w) =3, f(u) = f(a) =0, f(b) =1 and f(x) =2 for z € V(G) \ V(F) is an OIDIDF
on G of weight 2n — 4, and so

Yoid1 (G) + Yoiar (G) < 2n—4+n=3n—4.

In the remaining case a has a neighbor b and hence F' = P,. Applying Proposition 1.5,
we obtain Y,iqr(G) = 2n — 3. If we define on G the function f(w) =2, f(u) = f(v) =0
and f(z) = 1 for x € V(G) \ {u,v,w}, then f is an OIDIDF on G of weight n — 1.
Consequently,
Yoidl (G) + ’ym'd](é) <2n—-3+n-1=3n—4.

If n(F) =5, then n > 6. If F' is not connected, then F' consists of two components
of order two and three, respectively. We observe that 7,47 (G) < 2(n—5)+6 = 2n —4,
and this leads to the desired result. Now let F' be connected. If §(F) > 2, then we
obtain as above

Yoid1 (G) + Yoiar (G) < 2(n —5) +5+n = 3n — 5.
Let now §(F) = 1. If A(F) =2, then F' = P5 and Proposition 1.5 yields

Yoid1 (G) + Yoiar (G) < 2(n —5) + 6 +n = 3n — 4.
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If A(F) = 4, then let v be a vertex of degree 4 and a, b, ¢, d be the neighbors of v in F. If
we define the function f with f(v) =3, f(a) =0, f(b) = f(c) = f(d) =1 and f(x) =2
for x € V(G) \ V(F), then f is an OIDIDF on G of weight 2n — 4, and the desired
result follows as before. If A(F') = 3, then let v be a vertex of degree 3 and «a, b, ¢ be
the neighbors of v in F. Assume, without loss of generality, that the remaining vertex
d is adjacent to a in F'. If we define the function f with f(v) = f(d) =2, f(a) =0,
f(0) = f(e) =1and f(z) =2 for x € V(G) \ V(F), then f is an OIDIDF on G of
weight 2n — 4, and the desired result follows as above.

Finally, let n(F) = 6. If F = 3K>, then v,;4:(G) = 2n — 3 and we deduce from

Theorem 3.2 (i) that Y447 (G) =n — 2 and so

Yoid1 (G) + Yoiar (G) = 2n — 5.
If F # 3K, then Proposition 1.2 implies Y447 (F) < 8 and thus
Yoiar (G) < 2(n —6) +8 =2n — 4.

Hence

’}/oid](G)+’YoidI(G) <2n—44n=3n—4. O

For completeness note that Corollary 2.2 implies

Yoidr (Kn) + Yoiar (Kn) =3n—1 for n > 4.

Furthermore
Yoidr (K1) + Yoiar (K1) =4=3n+1 for n=1,
Yoial (K2) + Yoiar(K2) =7=3n+1 for n=2
and o
Yoidl (K3) + Yoiar (K3) =9=3n for n=3.
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