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REMARKS
ON THE OUTER-INDEPENDENT
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Abstract. Let G be a graph with vertex set V (G). If u ∈ V (G), then N [u] is the closed
neighborhood of u. An outer-independent double Italian dominating function (OIDIDF)
on a graph G is a function f : V (G) −→ {0, 1, 2, 3} such that if f(v) ∈ {0, 1} for a vertex
v ∈ V (G), then

∑
x∈N [v] f(x) ≥ 3, and the set {u ∈ V (G) : f(u) = 0} is independent. The

weight of an OIDIDF f is the sum
∑

v∈V (G) f(v). The outer-independent double Italian
domination number γoidI(G) equals the minimum weight of an OIDIDF on G. In this
paper we present Nordhaus–Gaddum type bounds on the outer-independent double Italian
domination number which improved corresponding results given in [F. Azvin, N. Jafari Rad,
L. Volkmann, Bounds on the outer-independent double Italian domination number, Commun.
Comb. Optim. 6 (2021), 123–136]. Furthermore, we determine the outer-independent double
Italian domination number of some families of graphs.

Keywords: double Italian domination number, outer-independent double Italian domination
number, Nordhaus–Gaddum bound.
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1. INTRODUCTION

For definitions and notations not given here we refer to [9]. We consider simple graphs
G with vertex set V = V (G) and edge set E = E(G). The order of G is n = n(G) = |V |.
The open neighborhood of a vertex v is the set

N(v) = NG(v) = {u ∈ V (G) | uv ∈ E(G)}

and its closed neighborhood is the set

N [v] = NG[v] = N(v) ∪ {v}.

© 2021 Authors. Creative Commons CC-BY 4.0 259
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The degree of vertex v ∈ V is d(v) = dG(v) = |N(v)|. The maximum degree and
minimum degree of G are denoted by ∆ = ∆(G) and δ = δ(G), respectively. The
complement G of a graph G is that graph with vertex set V (G) such that two vertices
are adjacent in G if and only if these vertices are not adjacent in G. If D is a nonempty
subset of the vertex set V (G) of a graph G, then the subgraph G[D] of G induced by
D is the graph having vertex set D and whose edge set consists of those edges of G
incident with two vertices of D. A leaf is a vertex of degree one, and its neighbor is
called a support vertex. An edge adjacent to a leaf is called a pendant edge.

A set S of vertices is independent if no two vertices in S are adjacent. The maxi-
mum cardinality of an independent set in G is called the independence number α(G)
of G. A vertex cover of a graph G is a set S of vertices such that each edge of G has
at least one end point in S. The minimum cardinality of a vertex cover is denoted
by β(G). If δ(G) ≥ 1, then the identity α(G) + β(G) = n(G), due to Gallai [8],
is well-known. We write Pn for the path of order n, Cn for the cycle of length n and
Kn for the complete graph of order n. The complete t-partite graph Kn1,n2,...,nt

has
n = n1 +n2 + . . .+nt vertices and V (Kn1,n2,...,nt

) = S1∪S2∪ . . .∪St, where |Si| = ni

for 1 ≤ i ≤ t, {u, v} ⊆ Si implies u and v are not adjacent, and u ∈ Si and v ∈ Sj

with i < j implies u and v are adjacent, and, specifically, K1,n−1 is called a star.
If we add two disjoint pendant edges to a cycle of length three, then we obtain the
bull graph, denoted by B5.

Cockayne, Dreyer, S.M. Hedetniemi and S.T. Hedetniemi [7] introduced the concept
of Roman domination in graphs, and since then a lot of related variations and
generalizations have been studied (see for example, [3–6]).

Mojdeh and Volkmann [10] considered the following variant of Roman
domination. A double Italian dominating function (DIDF) on a graph G is a function
f : V (G) −→ {0, 1, 2, 3} such that if f(v) ∈ {0, 1} for a vertex v ∈ V (G), then∑

x∈N [v] f(x) ≥ 3. The weight of a DIDF f is the sum w(f) =
∑

v∈V (G) f(v),
and the minimum weight of a DIDF in a graph G is the double Italian domina-
tion number, denoted by γdI(G). A DIDF f on G of weight γdI(G) is called a
γdI(G)-function. For a DIDF f , let (V0, V1, V2, V3) be the ordered partition of V (G),
where Vi = {v ∈ V (G) : f(v) = i} for i = 0, 1, 2, 3. There is a 1–1 correspondence
between the function f and the ordered partition (V0, V1, V2, V3). So we will write
f = (V0, V1, V2, V3). This concept was further studied in [1, 12].

A double Italian dominating function f = (V0, V1, V2, V3) on a graph G is called
in [2] an outer-independent double Italian dominating function (OIDIDF) if V0 is an
independent set. The outer-independent double Italian domination number γoidI(G)
equals the minimum weight of an OIDIDF on G. An OIDIDF f on G of weight γoidI(G)
is called a γoidI(G)-function. Clearly, γdI(G) ≤ γoidI(G).

In this paper we present Nordhaus–Gaddum type results on the outer-independent
double Italian domination number which improved corresponding results given in [2].
Furthermore, we give different bounds, and we determine the outer-independent double
Italian domination number of some special graphs.

We make use of the following results.
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Proposition 1.1 ([10]). If G is a graph of order n ≥ 2 then γdI(G) ≥ 3, with equality
if and only if ∆(G) = n− 1.

Proposition 1.2 ([2]). Let G be a graph of order n. If δ(G) ≥ 1, then γoidI(G) ≤ 3n
2 ,

with equality if and only if G = pK2 for an integer p ≥ 1.

The equality part in Proposition 1.2 can be found in the proof of Theorem 5 in [2].

Proposition 1.3 ([2]). If G is a graph of order n with δ(G) ≥ 2, then γoidI(G) ≤ n.

Proposition 1.4 ([2]). If Cn is a cycle of length n, then γoidI(Cn) = n.

Proposition 1.5 ([2]). If Pn is a path of order n ≥ 4, then γoidI(Pn) = n+ 1.

2. BOUNDS

Theorem 2.1. Let G be a graph of order n with δ(G) ≥ 1.

(1) ([2]) Then β(G) ≤ γoidI(G) ≤ 3β(G).
(2) ([2]) If δ(G) ≥ 2, then γoidI(G) ≤ 2β(G).
(3) If δ(G) ≥ 2, and G is not bipartite, then γoidI(G) ≤ 2β(G)− 1.
(4) Let δ(G) ≥ 3, and let S be a vertex cover of minimum cardinality. If δ(G[S]) ≥ 2,

then γoidI(G) = β(G).

Proof. Let S be a vertex cover of minimum cardinality. Then V (G) \ S is a maximum
independent set.

Item (1). If we define the function f by f(x) = 3 for x ∈ S and f(x) = 0
for x ∈ V (G) \ S, then f is an OIDIDF on G of weight 3β(G). Therefore
γoidI(G) ≤ 3β(G), and the upper bound is proved. For the lower bound assume
that g is a γoidI(G)-function. Then g(x) = 0 for at most α(G) = n− β(G) vertices x,
and therefore γoidI(G) = w(g) ≥ β(G).

Item (2). We define f by f(x) = 2 for x ∈ S and f(x) = 0 for x ∈ V (G) \ S.
Since δ(G) ≥ 2, we see that f is an OIDIDF on G of weight 2β(G). Therefore
γoidI(G) ≤ 2β(G).

Item (3). Since G is not bipartite and V (G) \ S is independent, the induced
subgraph G[S] contains an edge uv. Now define the function f by f(u) = 1, f(x) = 2
for x ∈ S \ {u} and f(x) = 0 for x ∈ V (G) \ S. We deduce that f is an OIDIDF on G
of weight 2β(G)− 1, and thus γoidI(G) ≤ 2β(G)− 1.

Item (4). Define f by f(x) = 1 for x ∈ S and f(x) = 0 for x ∈ V (G) \ S. Since
δ(G) ≥ 3 and δ(G[S]) ≥ 2, we observe that f is an OIDIDF on G of weight β(G).
So γoidI(G) ≤ β(G), and Item (1) leads to γoidI(G) = β(G).

Since β(Kn) = n − 1 for the complete graph of order n ≥ 2, the next corollary
follows from Theorem 2.1 (4) immediately.

Corollary 2.2. If n ≥ 4, then γoidI(Kn) = n− 1.

The next examples will demonstrate that Theorem 2.1 is sharp.
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Example 2.3.

(1) If Q = pK2, then γoidI(Q) = 3p = 3β(Q).
(2) Let Q be a graph of order q with vertex set {v1, v2, . . . , vq}. If we add ti ≥ 2

pendant edges to each vertex vi for 1 ≤ i ≤ q, then let H be the resulting graph.
Let g be an OIDIDF on H, and let ai,1, ai,2, . . . , ai,ti

be the leaves adjacent to vi

for 1 ≤ i ≤ q. Then it is straightforward to verify that g(vi) +
∑ti

j=1 g(ai,j) ≥ 3
for each 1 ≤ i ≤ q. Therefore γoidI(H) ≥ 3q = 3β(H). According to Theorem 2.1
(1), we obtain γoidI(H) = 3q = 3β(H). These examples show that Theorem 2.1
(1) is sharp.

(3) If C2p is a cycle of even length, then it follows from Proposition 1.4 that
γoidI(C2p) = 2p = 2β(C2p), and thus Theorem 2.1 (2) is sharp.

(4) If C2p+1 is a cycle of odd length, then it follows from Proposition 1.4 that
γoidI(C2p+1) = 2p+ 1 = 2β(C2p+1)− 1, and thus Theorem 2.1 (3) is sharp.

Corollary 2.2 shows that Theorem 2.1 (4) is sharp.

Theorem 2.4. If G is a graph of order n ≥ 2, then γoidI(G) ≥ 3, with equality if and
only if G = K1,n−1, G = K1,1,n−2 (n ≥ 3) or G = K1,1,1,n−3 (n ≥ 4).

Proof. Proposition 1.1 implies γoidI(G) ≥ γdI(G) ≥ 3. If G = K1,n−1 is a star, then
define f by f(v) = 3 for the center v of the star and f(x) = 0 for x ∈ V (G)\{v}. Then
f is an OIDIDF on G of weight 3 and therefore γoidI(G) ≤ 3, and thus γoidI(G) = 3.
If G = K1,1,n−2 with S1 = {x1} and S2 = {x2}, then define f by f(x1) = 2, f(x2) = 1
and f(x) = 0 for x ∈ V (G) \ {x1, x2}. Then f is an OIDIDF on G of weight 3 and
therefore γoidI(G) = 3. If G = K1,1,1,n−3 with S1 = {x1}, S2 = {x2} and S3 = {x3},
then define f by f(x1) = f(x2) = f(x3) = 1 and f(x) = 0 for x ∈ V (G) \ {x1, x2, x3}.
Then f is an OIDIDF on G of weight 3 and thus γoidI(G) = 3.

Coversely, assume that γoidI(G) = 3. Then there is a vertex v with value 3 such
that the remaining n− 1 vertices with value 0 are independent and adjacent to v, and
therefore G is a star; or there are two adjacent vertices u and v with value 2 and 1,
respectively, such that the remaining n− 2 vertices with value 0 are independent and
adjacent to u and v, and therefore G = K1,1,n−2; or there are three mutually adjacent
vertices u, v, w with value 1 such that the remaining n− 3 vertices with value 0 are
independent and adjacent to u, v and w, and therefore G = K1,1,1,n−3.

Theorem 2.4 implies γoidI(K1,1,n−2) = 3 = 2β(K1,1,n−2) − 1 (n ≥ 3) and
γoidI(K1,1,1,n−2) = 3 = β(K1,1,1,n−2) (n ≥ 4). These are further examples which
show the sharpness of Theorem 2.1 (3) and (4).

3. COMPLETE t-PARTITE GRAPHS

Theorem 3.1. Let G = Kn1,n2 be the complete bipartite graph such that n1 ≤ n2.

(1) If n1 = 1, then γoidI(G) = 3.
(2) If n1 = 2, then γoidI(G) = 4.
(3) If n1 ≥ 3, then γoidI(G) = n1 + 2.
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Proof. Theorem 2.4 implies Item (1).
Item (2). It follows from Theorem 2.1 (2) that γoidI(G) ≤ 2β(G) = 4. Since

γoidI(G) ≥ 4 according to Theorem 2.4, we deduce that γoidI(G) = 4.
Item (3). If n1 ≥ 3, then let u ∈ S2. Define the function f by f(x) = 1 for x ∈ S1,

f(u) = 2 and f(x) = 0 for x ∈ S2 \ {u}. Then f is an OIDIDF on G of weight n1 + 2
and therefore γoidI(G) ≤ n1 +2. If g is an OIDIDF on G, then we observe that g(x) = 0
for at most n2 vertices. However, if g(x) = 0 for all x ∈ S2, then g(x) ≥ 2 for all
x ∈ S1 and therefore w(g) ≥ 2n1. If g(x) ≥ 2 for all x ∈ S2, then w(g) ≥ 2n2 ≥ 2n1.
Next assume that g(x) ≥ 1 for all x ∈ S2 and g(v) = 1 for at least one vertex v ∈ S2.
Then we observe that

w(g) ≥
∑

x∈N [v]

g(x) + (n2 − 1) ≥ 3 + (n2 − 1) ≥ n1 + 2.

Finally, we assume that g(v) = 0 for at least one vertex v ∈ S2. Then g(x) ≥ 1 for all
vertices x ∈ S1. In addition, assume that g(x) ≥ 1 for at least r ≥ 1 vertices x ∈ S2.
If r ≥ 2, then w(g) ≥ n1 + r, and if r = 1, then we observe that w(g) ≥ n1 + 2.
Altogether, we deduce that γoidI(G) ≥ n1 + 2 and so γoidI(G) = n1 + 2.

Theorem 3.1 (2) yields γoidI(K2,n−2) = 4 = 2β(K2,n−2) (n ≥ 4). This is a further
example which show the sharpness of Theorem 2.1 (2).

Theorem 3.2. Let G = Kn1,n2,...,nt
be the complete t-partite graph of order n such

that t ≥ 3 and n1 ≤ n2 ≤ . . . ≤ nt.

(1) If t ≥ 4 or t = 3 and n1 ≥ 2, then γoidI(G) = n− nt.
(2) If t = 3, n1 = 1 and n2 = 1, then γoidI(G) = 3.
(3) If t = 3, n1 = 1 and n2 = 2, then γoidI(G) = 4.
(4) If t = 3, n1 = 1 and n2 ≥ 3, then γoidI(G) = n2 + 2.

Proof. Item (1). If t ≥ 4 or t = 3 and n1 ≥ 2, then δ(G) ≥ 3 and S = S1∪S2∪. . .∪St−1
is a minimum vertex cover of G such that δ(G[S]) ≥ 2. Therefore it follows from
Theorem 2.1 (4) that γoidI(G) = β(G) = n− nt.

Theorem 2.4 implies Item (2).
Item (3). If t = 3, n1 = 1 and n2 = 2, then define the function f by f(x) = 2 for

x ∈ S1, f(x) = 1 for x ∈ S2 and f(x) = 0 for x ∈ S3. Then f is an OIDIDF on G of
weight 4 and therefore γoidI(G) ≤ 4. Since γoidI(G) ≥ 4 according to Theorem 2.4,
we deduce that γoidI(G) = 4.

Item (4). If t = 3, n1 = 1 and n2 ≥ 3, then define the function f by f(x) = 2 for
x ∈ S1, f(x) = 1 for x ∈ S2 and f(x) = 0 for x ∈ S3. Then f is an OIDIDF on G of
weight n2 + 2 and therefore γoidI(G) ≤ n2 + 2. If g is an OIDIDF on G, then g(x) = 0
for at most n3 vertices, and therefore w(g) ≥ n2 + 1. Next assume, without loss of
generality, that g(w) = 0 for at least one vertex w ∈ S3. However, if g(x) = 0 for all
vertices x ∈ S3, then g(x) = 1 for all vertices x ∈ S1 ∪ S2 is not possible and therefore
w(g) ≥ n2 + 2. In addition, if f(x) ≥ 1 for at least one vertex x ∈ S3, then we also
have w(g) ≥ n2 + 2. Consequently, γoidI(G) ≥ n2 + 2 and so γoidI(G) = n2 + 2.
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4. NORDHAUS–GADDUM TYPE RESULTS

Results of Nordhaus–Gaddum type study the extreme values of the sum or product of
a parameter on a graph and its complement. In their classical paper [11], Nordhaus and
Gaddum discussed this problem for the chromatic number. We discuss this problem
for the outer-independent double Italian domination number.

Theorem 4.1 ([2]). Let G be a graph G of order n ≥ 3. Then γoidI(G)+γoidI(G) ≤ 3n,
with equality if and only if G ∈ {K3,K3}.

Next we improve Theorem 4.1. In the following let Kn − e be the complete graph
minus an edge e.

Theorem 4.2. Let G 6∈ {Kn,Kn} be a graph G of order n ≥ 5. Then

γoidI(G) + γoidI(G) ≤ 3n− 3,

with equality if and only if

G ∈ {Kn − e,Kn − e,K1,2,2,K1,2,2, B5}.

Proof. First assume that δ(G) ≥ 1 and δ(G) ≥ 1. Assume next that δ(G) = 1 or
δ(G) = 1, say δ(G) = 1. Let dG(v) = 1 and let w be a neighbor of v in G. Then v is
in G adjacent to all vertices of V (G) \ {v, w}, and since δ(G) ≥ 1, w is in G adjacent
to a vertex u 6= v, w. If we define the function f by f(v) = f(w) = 2, f(u) = 0
and f(x) = 1 for x ∈ V (G) \ {u, v, w}, then f is an OIDIDF on G and therefore
γoidI(G) ≤ n+ 1.

If δ(G) = 1, then we obtain analogously γoidI(G) ≤ n+ 1 and therefore

γoidI(G) + γoidI(G) ≤ n+ 1 + n+ 1 = 2n+ 2 ≤ 3n− 4

for n ≥ 6. Let now n = 5. First we observe that G and G are connected and
∆(G),∆(G) = 3. Let w be a vertex with dG(w) = 3, let x, y, z be the neighbors of w
in G, and let u be the remaining vertex. If {x, y, z} is an independent set in G, then
the function f with f(w) = 3, f(u) = 2 and f(x) = f(y) = f(z) = 0 is an OIDIDF on
G of weight 5, and we deduce that

γoidI(G) + γoidI(G) ≤ 5 + 6 = 11 = 3n− 4.

So assume, without loss of generality, that xy ∈ E(G). If uz ∈ E(G), then δ(G) = 1
implies uw, ux, uy ∈ E(G). Then the function f with f(u) = 3, f(z) = 2 and
f(x) = f(y) = f(w) = 0 is an OIDIDF on G of weight 5, and we obtain

γoidI(G) + γoidI(G) ≤ 6 + 5 = 11 = 3n− 4.

If uz 6∈ E(G), then assume, without loss of generality, that ux ∈ E(G). If there is no
further edge in G, then G is the bull graph B5 and G is the bull graph too. It is easy
to see that

γoidI(B5) + γoidI(B5) = 6 + 6 = 12 = 3n− 3,
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as desired. If G contains a further edge, for example uy, then the function f defined
by f(z) = 3, f(w) = 2 and f(u) = f(x) = f(y) = 0 is an OIDIDF on G of weight 5,
and we have

γoidI(G) + γoidI(G) ≤ 11 = 3n− 4.
If δ(G) ≥ 2, then Proposition 1.3 leads to γoidI(G) ≤ n, and we obtain according

to Proposition 1.2 that

γoidI(G) + γoidI(G) ≤ 3n
2 + n < 3n− 3

for n ≥ 7 and so
γoidI(G) + γoidI(G) ≤ 3n− 4

for n ≥ 7. Let next n = 6. If G = 3K2, then Theorem 3.2 (i) leads to

γoidI(G) + γoidI(G) = 9 + γoidI(K2,2,2) = 9 + 4 = 13 = 3n− 5.

If G 6= 3K2, then Proposition 1.2 implies

γoidI(G) + γoidI(G) ≤ 8 + 6 = 14 = 3n− 4.

If n = 5, then we distinguish two cases. If G is not connected, then G consists of two
components of order two and three, respectively. It follows that

γoidI(G) + γoidI(G) ≤ 6 + 5 = 11 = 3n− 4.

If G is connected, then the condition δ(G) ≥ 2 yields to ∆(G) ≤ 2 and thus G = P5.
Now it follows from Proposition 1.5 that

γoidI(G) + γoidI(G) ≤ 6 + 5 = 11 = 3n− 4.

Second assume that δ(G) ≥ 2 and δ(G) ≥ 2. According to Proposition 1.3, we
deduce that

γoidI(G) + γoidI(G) ≤ 2n ≤ 3n− 4.
Finally assume that δ(G) = 0 or δ(G) = 0, say δ(G) = 0. Let I be the set of

isolated vertices of G, w ∈ I and F = G− I. We deduce from Proposition 1.2 that

γoidI(G) ≤ 2|I|+ 3n(F )
2 = 2|I|+ 2n(F )− n(F )

2 = 2n− n(F )
2 .

Since G 6= Kn, there exist two vertices u 6= w and v 6= w which are not adjacent
in G. Now we see that the function f with f(w) = 3, f(u) = f(v) = 0 and f(x) = 1
for x ∈ V (G) \ {u, v, w} is an OIDIDF on G of weight n, and therefore γoidI(G) ≤ n.
If n(F ) ≥ 7, then it follows that

γoidI(G) + γoidI(G) ≤ 2n− n(F )
2 + n ≤ 3n− 7

2

and thus γoidI(G) + γoidI(G) ≤ 3n− 4.
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Let now n(F ) = 2. Then G = Kn − e, and Theorem 2.1 (4) implies

γoidI(G) = β(G) = n− 2.

Since γoidI(G) = 2n− 1, we obtain

γoidI(G) + γoidI(G) = 2n− 1 + n− 2 = 3n− 3,

as desired.
If n(F ) = 3, then F = P3 or F = C3. In both cases it is easy to see that

γoidI(G) + γoidI(G) ≤ 3n− 4.

Next let n(F ) = 4. Assume that F = 2K2. If n = 5, then γoidI(G) = 8, G = K1,2,2
and therefore it follows by Theorem 3.2 (3) that γoidI(G) = 4. This leads to

γoidI(G) + γoidI(G) = 12 = 3n− 3,

as desired. If n ≥ 6, then γoidI(G) = 2n − 2 and by Theorem 3.2 (i) we have
γoidI(G) = n− 2 and so

γoidI(G) + γoidI(G) = 2n− 4.

If F 6= 2K2, then F is connected. If δ(F ) ≥ 2, then Proposition 1.3 implies γoidI(F ) ≤ 4
and it follows that

γoidI(G) + γoidI(G) ≤ 2(n− 4) + 4 + n = 3n− 4.

If δ(F ) = 1, then let u be a vertex of degree 1, v be a neighbor of u and a 6= u be
a neighbor of v in F . If v has a further neighbor b 6= u, a, then the function f with
f(v) = 3, f(u) = f(a) = 0, f(b) = 1 and f(x) = 2 for x ∈ V (G) \ V (F ) is an OIDIDF
on G of weight 2n− 4, and so

γoidI(G) + γoidI(G) ≤ 2n− 4 + n = 3n− 4.

In the remaining case a has a neighbor b and hence F = P4. Applying Proposition 1.5,
we obtain γoidI(G) = 2n− 3. If we define on G the function f(w) = 2, f(u) = f(v) = 0
and f(x) = 1 for x ∈ V (G) \ {u, v, w}, then f is an OIDIDF on G of weight n − 1.
Consequently,

γoidI(G) + γoidI(G) ≤ 2n− 3 + n− 1 = 3n− 4.
If n(F ) = 5, then n ≥ 6. If F is not connected, then F consists of two components

of order two and three, respectively. We observe that γoidI(G) ≤ 2(n− 5) + 6 = 2n− 4,
and this leads to the desired result. Now let F be connected. If δ(F ) ≥ 2, then we
obtain as above

γoidI(G) + γoidI(G) ≤ 2(n− 5) + 5 + n = 3n− 5.

Let now δ(F ) = 1. If ∆(F ) = 2, then F = P5 and Proposition 1.5 yields

γoidI(G) + γoidI(G) ≤ 2(n− 5) + 6 + n = 3n− 4.
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If ∆(F ) = 4, then let v be a vertex of degree 4 and a, b, c, d be the neighbors of v in F . If
we define the function f with f(v) = 3, f(a) = 0, f(b) = f(c) = f(d) = 1 and f(x) = 2
for x ∈ V (G) \ V (F ), then f is an OIDIDF on G of weight 2n− 4, and the desired
result follows as before. If ∆(F ) = 3, then let v be a vertex of degree 3 and a, b, c be
the neighbors of v in F . Assume, without loss of generality, that the remaining vertex
d is adjacent to a in F . If we define the function f with f(v) = f(d) = 2, f(a) = 0,
f(b) = f(c) = 1 and f(x) = 2 for x ∈ V (G) \ V (F ), then f is an OIDIDF on G of
weight 2n− 4, and the desired result follows as above.

Finally, let n(F ) = 6. If F = 3K2, then γoidI(G) = 2n − 3 and we deduce from
Theorem 3.2 (i) that γoidI(G) = n− 2 and so

γoidI(G) + γoidI(G) = 2n− 5.

If F 6= 3K2, then Proposition 1.2 implies γoidI(F ) ≤ 8 and thus

γoidI(G) ≤ 2(n− 6) + 8 = 2n− 4.

Hence
γoidI(G) + γoidI(G) ≤ 2n− 4 + n = 3n− 4.

For completeness note that Corollary 2.2 implies

γoidI(Kn) + γoidI(Kn) = 3n− 1 for n ≥ 4.

Furthermore

γoidI(K1) + γoidI(K1) = 4 = 3n+ 1 for n = 1,
γoidI(K2) + γoidI(K2) = 7 = 3n+ 1 for n = 2

and
γoidI(K3) + γoidI(K3) = 9 = 3n for n = 3.

REFERENCES

[1] F. Azvin, N. Jafari Rad, Bounds on the double Italian domination number of a graph,
Discuss. Math. Graph Theory (to appear).

[2] F. Azvin, N. Jafari Rad, L. Volkmann, Bounds on the outer-independent double Italian
domination number, Commun. Comb. Optim. 6 (2021), 123–136.

[3] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, L. Volkmann, Roman domination in
graphs, [in:] T.W. Haynes, S.T. Hedetniemi, M.A. Henning (eds.), Topics in Domination
in Graphs, Springer, 2020, 365–409.

[4] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, L. Volkmann, Varieties of Roman
domination, [in:] T.W. Haynes, S.T. Hedetniemi, M.A. Henning (eds.), Structures of
Domination in Graphs, Springer, 2020 (to appear).

[5] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, L. Volkmann, Varieties of Roman
domination II, AKCE Int. J. Graphs Comb. 17 (2020), 966–984.



268 Lutz Volkmann

[6] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, L. Volkmann, A survey on Roman
domination parameters in directed graphs, J. Combin. Math. Comb. Comput. (to appear).

[7] E.J. Cockayne, P.A. Dreyer, S.M. Hedetniemi, S.T. Hedetniemi, Roman domination in
graphs, Discrete Math. 278 (2004), 11–22.

[8] T. Gallai, Über extreme Punkt- und Kantenmengen, Ann. Univ. Sci. Budapest, Eötvös
Sect. Math. 2 (1959), 133–138.

[9] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs,
Marcel Dekker, Inc., New York, 1998.

[10] D.A. Mojdeh, L. Volkmann, Roman {3}–domination (double Italian domination), Dis-
crete Appl. Math. 283 (2020), 555–564.

[11] E.A. Nordhaus, J.W. Gaddum, On complementary graphs, Amer. Math. Monthly 63
(1956), 175–177.

[12] Z. Shao, D.A. Mojdeh, L. Volkmann, Total Roman {3}-domination, Symmetry (2020),
12(2), 268.

Lutz Volkmann
volkm@math2.rwth-aachen.de

RWTH Aachen University
Lehrstuhl II für Mathematik
52056 Aachen, Germany

Received: November 9, 2020.
Revised: January 31, 2021.
Accepted: February 9, 2021.


